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Abstract

Circuit representations are becoming the lingua franca to express and reason
about tractable generative and discriminative models. In this paper, we show
how complex inference scenarios for these models that commonly arise in ma-
chine learning—from computing the expectations of decision tree ensembles to
information-theoretic divergences of sum-product networks—can be represented
in terms of tractable modular operations over circuits. Specifically, we character-
ize the tractability of simple transformations—sums, products, quotients, powers,
logarithms, and exponentials—in terms of sufficient structural constraints of the
circuits they operate on, and present novel hardness results for the cases in which
these properties are not satisfied. Building on these operations, we derive a unified
framework for reasoning about tractable models that generalizes several results in
the literature and opens up novel tractable inference scenarios.

1 Introduction

Many core computational tasks in machine learning (ML) and Al involve solving complex integrals,
such as expectations appearing in training losses or in information-theoretic quantities including
entropies or divergences. A fundamental question naturally arises: under which conditions do these
quantities admit tractable computation? Or equivalently, when can we compute them reliably and
efficiently without resorting to approximations or heuristics? If we are able to find model classes
to tractably compute these quantities of interest—henceforth called queries—we can then design
efficient algorithms with important applications in learning, approximate inference [44]], model
compression [28]], explainable Al [24} 47, 52] and algorithmic bias detection [23} 7} 6].

This “quest” for tracing the tractability of different queries has been carried out several times, often
independently for different model classes in ML and Al and crucially, for each query in isolation. For
example, the computation of the Kullback-Leibler divergence (KLD) is known to have a closed form
for Gaussians, but only recently has an exact algorithm been derived for a more complex tractable
model class such as probabilistic sentential decision diagrams (PSDDs) [28]. On the other hand,
tractable computation of the entropy, despite being a sub-routine for the KLD, has only been derived
for a different tractable model class—selective sum-product networks (SPNs) [36]—by Shih and
Ermon [44]. In the current paradigm, if one were to trace the tractability of a query that has not
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Figure 1: Computational pipelines of the KLD (left) and cross entropy (right) over two distributions p
and ¢ encoded as circuits, with the intermediate computations (r, s and t) also represented as circuits.
Their corresponding implementations in a few lines of Julia code are shown on their right.

yet been investigated but still involves the same “building blocks” such as logarithms, integrals and
products over distributions, for instance Rényi’s alpha divergence [40], they would need to derive a
novel custom algorithm for each model class and prove its tractability from scratch.

In this paper, we take a different path and introduce a general framework under which the tractability of
complex queries can be traced in a unified and effortless manner over model classes and query classes.
To abstract from the different model formalisms, we carry our analysis over circuit representations [§]]
as they subsume many tractable generative models—probabilistic circuits such as Chow-Liu trees [9],
hidden Markov models (HMMs) [39], sum-product networks (SPNs) [38], and other deep mixture
models—as well as discriminative ones, including decision trees [25, [10] and deep regressors [23],
thus enabling a unified treatment across model classes.

To generalize our analysis across queries, we propose to represent a single query as a circuit pipeline:
a computational graph whose intermediate operations transform and combine the input circuits into
other circuits. We can first build a set of simple tractable circuit transformations—sums, products,
powers, logarithms, and exponentials—and then i) analyze the tractability of a single query by
propagating the sufficient conditions for tractability of the intermediate operators in the pipeline;
and ii) automatically distill a tractable inference algorithm by composing the operators used. For
instance, shows the pipeline for computing the KLD of p and ¢, two distributions encoded by
circuits. We can identify a general class of models that supports its tractable computation: by tracing
the conditions for tractable quotient, logarithm, and product over circuits such that the output circuit
(i.e., ) admits tractable integration, we can derive a set of sufficient conditions for the input circuits.
Moreover, we can reuse the logarithm and product operations in the KLD pipeline to reason about
the tractability of cross entropy, in the very same way we can reuse the corresponding subroutines
we provide in Julia to quickly implement algorithms for the two queries in a couple lines of code as
shown in This compositionality greatly speeds up the design of novel tractable algorithms.

We make the following contributions: (1) a systematic way to compositionally answer many complex
queries using simple circuit transformations (Sec. 3), proving sufficient conditions for their tractability
and computational hardness when these conditions are unmet (Tab. I)); (2) a unification and gener-
alization of many inference algorithms proposed in the literature so far for specific representations
(Sec. 4); (3) novel tractability and hardness results of complex information-theoretic queries including
several widely used entropies and divergences (Tab. 2); and (4) a publicly available implementation
of these operators in the Juice circuit library [12]]. We now start by introducing the circuit language.

2 Circuit Representations

Circuits represent functions as parameterized computational graphs. By imposing certain structural
constraints on these graphs, we can guarantee the tractability of certain operations over the encoded
functions. Moreover, these constraints help understand how circuits unify several classical tractable
model classes, such as mixture models, bounded-treewidth probabilistic graphical models (PGMs),
decision trees, and compact logical function representations [8, [51]. As such, circuits provide a
language for building and reasoning about tractable representations, and it follows that all our results
in the following sections automatically translate to these model classes.

We introduce the basic rules of this language by distinguishing between general circuits and those
encoding probability distributions, as some operators in[Sec. 3|may be restricted to the latter. Then, we
will review the structural constraints we need to characterize different inference scenarios, also known
as classes of queries. We denote random variables by uppercase letters (X) and their assignments by
lowercase ones (). Sets of variables and their assignments are denoted by bold uppercase (X) and
bold lowercase (x) letters, respectively, and the set of all their values as val(X).
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Figure 2: Examples of circuits with different structural properties. The feedforward order is from left
to right; input units are labeled by their scopes; and sum parameters are omitted for visual clarity.
Product units of the rearranged omni-compatible circuits encoding p(X1) - p(X32) - p(X3) are shown
in (c) and color-coded with those of matching scope in (a) and (b).

Definition 2.1 (Circuit). A circuit p over variables X is a parameterized computational graph
encoding a function p(X) and comprising three kinds of computational units: input, product, and
sum. Each inner unit n (i.e., product or sum unit) receives inputs from other units, denoted in(n).
If n is an input unit, it encodes a parameterized function p,, (¢(n)) over variables ¢(n) C X, also
called its scope. Instead, if n is a sum unit, it encodes 3~ ¢, () Oepe(#(c)) where 0. € R are the sum

parameters; while if it is a product unit, it encodes [ ] ¢y (,,) Pc(¢(c)). The scope of an inner unit is
the union of the scopes of its inputs: ¢(1) = |J.cin(n) (). The output unit of the circuit is the last

unit (i.e., with out-degree 0) in the graph, encoding p(X). The support of p is the set of all complete
states for X for which the output of p is non-zero: supp(p) = {z € val(X) | p(x) # 0}.

Circuits can be understood as compact representations of polynomials with exponentially many terms,
whose indeterminates are the functions encoded by the input units. These functions are assumed to be
simple enough to allow tractable computations of the operations discussed in this paper. shows
some examples of circuits. A probabilistic circuit (PC) [8] represents a (possibly unnormalized)
probability distribution by encoding its probability mass, density, or a combination thereof.

Definition 2.2 (Probabilistic circuit). A PC over variables X is a circuit encoding a function p that is
non-negative for all values of X; i.e., V& € val(X) : p(x) > 0.

From here on, we will assume that a PC has positive sum parameters and input units that model valid
(unnormalized) distributions, which is a sufficient condition to satisfy the above definition. Moreover,
w.l.o.g. we will assume that each layer of a circuit alternates between sum and product units and that
every product unit n receives only two inputs ¢y, ¢a, i.e., pr(X) = pe, (X) - pe, (X). These conditions
can easily be enforced on a circuit in exchange for only a polynomial increase in its size [49,[50].

Computing (functions of) p(X), or in other words performing inference, can be done by evaluating
its computational graph. Hence, the computational cost of inference on a circuit is a function of its
size, defined as the number of edges in it and denoted as |p|. For instance, querying the value of p for
a complete assignment x equals its feedforward evaluation—inputs before outputs—and therefore
is linear in |p|. Other common inference scenarios such as function integration—which translate to
marginal inference in the context of probability distributions—can be tackled in linear time with
circuits that exhibit certain structural properties, as discussed next.

Structural Properties of Circuits. Structural constraints on the computational graph of a circuit in
terms of its scope or support provide sufficient and/or necessary conditions for certain queries to be
tractably computed. We now define the structural properties needed for the query classes that this
work will focus on, referring to Choi et al. [8] for more details.

Definition 2.3 (Smoothness). A circuit is smooth if for every sum unit n, its inputs depend on the
same variables: V ¢y, ca € in(n), ¢(c1) = P(ca).

Smooth PCs generalize shallow mixture models [30] to deep and hierarchical models. For instance, a
Gaussian mixture model (GMM) can be represented as a smooth PC with a single sum unit over as
many input units as mixture components, each encoding a (multivariate) Gaussian density.

Definition 2.4 (Decomposability). A circuit is decomposable if the inputs of every product unit n
depend on disjoint sets of variables: in(n) = {ci,ca}, d(c1) N P(c2) = 0.



Decomposable product units encode local factorizations. That is, a decomposable product unit n
over variables X encodes p,, (X) = p1(X1) - p2(Xs2) where X; and X5 form a partition of X. Taken
together, decomposability and smoothness are a sufficient and necessary condition for performing
tractable integration over arbitrary sets of variables in a single feedforward pass, as they enable larger
integrals to be efficiently decomposed into smaller ones [[13} [8]]. Next proposition formalizes it.

Proposition 2.1 (Tractable integration, Choi et al. [8]]). Let p be a smooth and decomposable circuit
over X with input functions that can be tractably integrated. Then for any variables Y C X and
their assignment vy, the integral fze\/al(z) p(y, z)dZ can be computed exactly in O(|p|) time, where

Z denotes X \'Y.

As the complex queries we focus on in this work involve integration as the last step, it is therefore
needed that any intermediate operation preserves at least decomposability; smoothness is less of an
issue, as it can be enforced in polytime [45]. A key additional constraint over scope decompositions
is compatibility. Intuitively, two decomposable circuits are compatible if they can be rearranged in
polynomial timeE] such that their respective product units, once matched by scope, decompose in the
same way. We formalize this with the following inductive definition.

Definition 2.5 (Compatibility). Two circuits p and ¢ over variables X are compatible if (1) they are
smooth and decomposable and (2) any pair of product units n € p and m € g with the same scope
can be rearranged into binary products that are mutually compatible and decompose in the same
way: (p(n)=¢(m)) = (¢(n;) =d(m;), n; and m; are compatible) for some rearrangement of
the inputs of n (resp. m) into ny, ng (resp. my, ms).

We can derive from compatibility the following properties pertaining to a single circuit, which will be
useful in our analysis later.

Definition 2.6 (Special types of compatibility). A circuit is structured-decomposable if it is com-
patible with itself. A decomposable circuit p over X is omni-compatible if it is compatible with any
smooth and decomposable circuit over X.

Not all decomposable circuits are structured-decomposable (see and [2b), but some can
be rearranged to be compatible with any decomposable circuit. For instance, in the fully
factorized product unit p(X) = p1(X71) - p2(X2) - p3(X3) can be rearranged into p1 (X1) - (p2(X2) -
p3(X3)) and pa(Xs) - (p1(X1) - p3(X3)) to match the yellow and pink products in We can
easily see that omni-compatible circuits must assume the form of mixtures of fully-factorized models;
ie., >, 0; [[;pij(X;). For example, an additive ensemble of decision trees over variables X can
be represented as an omni-compatible circuit (see [Ex. D.T]in the Appendix). Also note that if two
circuits are compatible and neither is omni-compatible, then both must be structured decomposable.

Definition 2.7 (Determinism). A circuit is deferministic if the inputs of every sum unit n have disjoint
supports: V¢1, o € in(n), 1 # ca = supp(c1) Nsupp(cz) = 0.

Analogously to decomposability, determinism induces a recursive partitioning, but this time over
the support of a circuit. For a deterministic sum unit n, the partitioning of its support can be
made explicit by introducing an indicator function per each of its inputs, i.e., ) c€in(n) O.pe(x) =
2 ccin(n) Oepe(@)[x € supp(p)]. Determinism allows for tractable maximization of circuits [13,[8].
While we do not consider maximization queries in this work, determinism will still play a crucial
role in the next sections. Moreover, bounded-treewidth PGMs, such as Chow-Liu trees [9]] and thin
junction trees [[1], can efficiently be represented as smooth, deterministic, and decomposable PCs via
compilation [13}111]]. Probabilistic sentential decision diagrams (PSDDs) [26] are deterministic and
structured-decomposable PCs that can be efficiently learned from data [11].

3 From Simple Circuit Transformations. ..

This section aims to build an atlas of simple operations over circuits which can then be composed into
more complex queries via circuit pipelines—computational graphs whose units are tractable operators
over circuits. To compose two operators, we would need that the output circuits of one satisfy the
structural properties required for the inputs of the other. As such, for each of these operations we are
interested in characterizing (1) its tractability in terms of the structural properties of its input circuits,

By changing the order in which n-ary product units are turned into a series of binary product units.



Table 1: Tractability and hardness of simple circuit operations. Tractable properties on inputs
translate to properties on outputs. E.g., for the quotient p/q, if p and ¢ are compatible (Cmp) and q is
deterministic (Det), then the output is decomposable (Dec); also (+) deterministic if p is deterministic;
and structured-decomposable (SD) if both p and ¢ are. Hardness results are for representing the
output as a smooth (Sm) and decomposable circuit without some input condition.

Tractability

Operation Hardness
Input properties Output properties Time Complexity

Sum 01p+ 029 (+Cmp) (+SD) O(|p|+q|) Prop. B.1} ~ NP-hard for Det output [43
PRODUCT p-q Cmp (+Det, +SD) Dec (+Det, +SD) O(|pllal) m. 3.2) #P-hard w/o Cmp [Thm. 3.1
POWER p",n €N SD (+Det) SD (+Det) O(lp|™) m. 3.3) #P-hard w/o SD m_33]and[B.T}

p*, o € R Sm, Dec, Det (+SD) Sm, Dec, Det (+SD) ~ O(|p|) m. 3.5)  #P-hard w/o Det m. 3.4
QUOTIENT p/q Cmp; ¢ Det (+p Det,+SD)  Dec (+Det,+SD) O(|pl|al) m. B.3}) #P-hard w/o Det m. B.2
LoG log(p) Sm, Dec, Det Sm, Dec O(|p|) m. 3. #P-hard w/o Det m. 3.0
Exp exp(p)  linear SD O(|pl) Top. 3. #P-hard m. 3./

and (2) its closure w.r.t. these properties, i.e. whether they are preserved in the output circuit, in
order to compose many operations together in a pipeline, while (3) providing an efficient algorithmic
implementation for it. As we are interested in pipelines for queries involving integration, we would
expect the output circuits to at least retain decomposability (see[Prop. 2.T)). For a pipeline in which
all operators can be computed tractably, a simple tractable algorithm can be then distilled for it.
Furthermore, our analysis will highlight if one needs to resort to approximations, by tracing the
hardness of representing the output of an operator as a decomposable circuit when some property
of its inputs is unmet. summarizes all our results. For space constraints, we discuss the main
theorems next and report their complete statements and proofs in the Appendix.

Sum of Circuits. The operation of summing two circuits p(Z) and ¢(Y) is defined as s(X) =
01 -p(Z) + 05 - q(Y) for X = Z UY and two real parameters 61, 62 € R. This operation, which is
at the core of additive ensembles of tractable representationsﬂ can be realized by introducing a single
sum unit that takes as input p and g. Summation applies to any input circuits, regardless of structural
assumptions, and it preserves several properties (see [Prop. B.T]in the Appendix). In particular, if
p and g are decomposable then s is also decomposable; moreover, if they are compatible then s is
structured-decomposable as well as compatible with p and q. However, representing a sum as a
deterministic circuit is known to be NP-hard [43]], even for compatible and deterministic inputs.

Product of Circuits. The product of two circuits p(Z) and ¢(Y) can be expressed as m(X) =
p(Z)-q(Y) for variables X = ZUY. If Z and Y are disjoint, the product m is already decomposable.
Otherwise, Shen et al. [43] proved that representing the product of two decomposable circuits as a
decomposable circuit is NP-hard, even if they are deterministic. We prove a novel result: it is even
#P-hard to multiply two structured-decomposable and deterministic circuits.

Theorem 3.1 (Hardness of product). If p and q are two structured-decomposable and deterministic
circuits, then computing their product as a decomposable circuit is #P-hard.

Shen et al. [43] also introduced an efficient algorithm for the product of two structured-decomposable
and deterministic PCs that are compatible (namely PSDDs). We generalize this result by proving that
compatibility alone is sufficient for the tractable product computation of any two circuits.

Theorem 3.2 (Tractable product). If p and q are two compatible circuits, then computing their
product as a decomposable circuit that is compatible with them can be done in O(|p| |q|) time.

The proof is by construction and leads to |Alg. 3|in the Appendix. In the following, we provide
a sketch of the algorithm for the case X = Z = Y. Intuitively, the idea is to “break down” the
construction of the product circuit in a recursive manner by exploiting compatibility. The base case is
where p and ¢ are input units with simple parametric forms. Their product can be represented as a
single input unit as long as we can find a simple parametric form for it, as is the case for products of
exponential families such as (multivariate) Gaussians. Next, we consider the inductive steps where
p and ¢ are two sum or product units. If p and ¢ are compatible product units, they decompose X
the same way for some ordering of inputs; i.e., p(X) =p1(X1)p2(X2) and ¢(X) =q1 (X1)g2(X2).
Then, their product m as a decomposable circuit can be constructed recursively from the products of
their inputs: m(X) = (p1¢1)(X1) - (p2g2)(Xz2). On the other hand, if p and ¢ are smooth sum units,
written as p(X)=>_, 0;p:(X) and ¢(X) =3, 0¢;(X), we can obtain their product m recursively

3t p and q are PCs, then s is a PC encoding a monotonic mixture model if 61,602 > 0 and 61 + 62 = 1.



by distributing product over sum. In other words, m(X)=>_, , 0;0;(pig;)(X). Note that if both
input circuits are also deterministic, m is also deterministic since supp(p;q;) =supp(p;) N supp(g;)
are disjoint for different ¢, 7. Combining these, the algorithm will recursively compute the product
of each pair of units in p and ¢ with matching scopes. Assuming efficient products for input units,
the overall complexity is O(|p| |g|), which yields a compact circuit m of size O(|p| |g|). This upper
bound is loose and in practice product circuits will be much smaller as our experiments show (Sec. 3)),
especially if inputs are deterministic as products of units with disjoint supports will be “pruned” away.

Powers of a Circuit. The a-power of a PC p(X) for an € R is denoted as p®(X) and is an
operation needed to compute generalizations of the entropy of a PC and related divergences (Sec. 4).
Let us first consider natural powers (o € N) which can be computed even for general circuits.

Theorem 3.3 (Natural powers). If p is a structured-decomposable circuit, then for any o € N, its
power can be represented as a structured-decomposable circuit in O(|p|™) time. Otherwise, if p is
only smooth and decomposable, then computing p®(X) as a decomposable circuit is #P-hard.

The proof for tractability easily follows by directly applying the product operation repeatedly.
However, the exponential dependence on « is unavoidable unless P=NP as we demonstrate in
in the Appendix, thus rendering the operation intractable for large c.

Turning our attention to non-natural « € R, and restricting our attention to PCs, structured-
decomposability is not sufficient to tractably compute a-powers, which we will show in the next
theorem for o« = —1. First, as zero raised to a negative power is undefined, we instead consider the
restricted a-power of a PC, denoted as p®(x)|y,,,(,) and equal to (p(x))* if © € supp(p) and 0

otherwise. Note that this is equivalent to the a.-power if o > 0. Abusing notation, we will also denote
this by p®(x)[x € supp(p)], where [-] stands for indicator functions.

Theorem 3.4 (Hardness of reciprocals). If p is a structured-decomposable circuit over variables X,
then computing p~!(X) ‘Supp(p) as a decomposable circuit is #P-hard.

The key property that enables efficient computation of power circuits is determinism. More interest-
ingly, we do not require structured-decomposability, but only smoothness and decomposability.

Theorem 3.5 (Tractable real powers). If p is a smooth, decomposable, and deterministic PC, then
for any o € R, its restricted power can be represented as a smooth, decomposable, and deterministic
circuit that is compatible with p in O(|p|) time.

Again, the proof is done by construction and detailed in The key insight is
that restricted powers “break down” over a smooth and deterministic sum unit p. That is,
(>, Oipi(x) [z € supp(p;)])” [ € supp(p)] = >, 09p%(x)[x € supp(p;)]. This follows from
the fact that for any «, at most one indicator [x € supp(p;)] evaluates to 1. As such, when multiply-
ing a deterministic sum unit with itself, each input will only have overlapping support with itself,
thus effectively matching product units only with themselves. This is why decomposability suffices.
In conclusion, this recursive decomposition of the power of a circuit will result in the power circuit
having the same structure as the original circuit, with input functions and sum parameters replaced by
their c-powers. The space and time complexity of the algorithm is O(|p|) for smooth, deterministic,
and decomposable PCs, even for natural powers. This will be a key insight to compactly multiply
circuits with the same support structure, such as when computing logarithms and entropies (Sec. 4).

We can already see an example of how simple operators can be composed to derive other tractable
ones. Consider the quotient of two circuits p(X) and ¢(X), denoted as p(X)/q(X), and restricted to
supp(q). The quotient, appearing in queries such as KLD or Itakura-Saito divergence , can be
computed by first taking the reciprocal circuit (i.e., the (—1)-power) of g, followed by its product
with p. Thus, if g is deterministic and compatible with p, we can take its reciprocal—which will have
the same structure as ¢—and multiply with p to obtain the quotient as a decomposable circuit as we
show in in the Appendix. There, instead proves that the quotient between p and a
non-deterministic q is #P-hard even if they are compatible.

Logarithms of a PC. The logarithm of a PC p(X), denoted log p(X), is fundamental in computing
quantities such as entropies and divergences between distributions (Sec. 4). Since the log is undefined
for 0 we will again consider the restricted logarithm, denoted as log p()|,,p,,,) and equal to log p(x)

if & € supp(p) and 0 otherwise.

supp



Theorem 3.6 (Logarithms). If p is a smooth, deterministic and decomposable PC, then its restricted
logarithm 1og p(X)|g,p(, can be represented as a decomposable circuit in O(|p|) time. Otherwise,
if p is only smooth and decomposable, or even structured-decomposable, computing its restricted
logarithm as a decomposable circuit is #P-hard.

Note that while the input of the logarithm operator must be a PC, its output can be a general circuit.
Moreover, if p is structured decomposable, then so is its logarithm. The tractability proof is again
by construction and is detailed in[Sec. B.3]in the Appendix. We point out that determinism again
allows the restricted log to decompose over the support of the PC, but this time the output circuit is
not deterministic, as more than one of its inputs can yield a non-zero output at a time. Nevertheless,
the inputs of the newly introduced sum units can be clearly partitioned into groups sharing the same
support of the corresponding product units in p. This acts as a relaxed form of determinism when at
most three inputs can be non-zero at once, and it implies that whenever we multiply a deterministic
circuit and its logarithmic circuit—for instance to compute its Shannon entropy (Sec. 4)—we can
leverage the sparsifying effect of non-overlapping supports and perform only a linear number of
products (cf. product and power operators). We confirm this empirically in when evaluating
the size of the intermediate circuits for computing entropy pipelines over real-world distributions.

Exponentials of a Circuit. The exponential of a circuit p(X), denoted exp(p(X)), is the inverse
operation of the logarithm and is a fundamental operation when representing distributions such as
log-linear models [27]. Similarly to the logarithm, building a decomposable circuit that encodes an
exponential of a circuit is hard in general.

Theorem 3.7 (Hardness of exponentials). Ifp is a smooth and decomposable circuit, then, computing
its exponential as a decomposable circuit is #P-hard, even if p is structured-decomposable.

Unlike the logarithm however, restricting the operation to deterministic circuits does not help with
tractability, since the issue comes from product units: the exponential of a product is neither a sum
nor product of exponentials. Nevertheless, it is easy to see that if p encodes a linear sum over its
variables, i.e., p(X) = ), 0; X;, we could easily represent its exponential as a circuit comprising a
single decomposable product unit, hence tractably.

Proposition 3.1 (Tractable exponential of a linear circuit). If p is a linear circuit, then its exponential
can be represented as an omni-compatible circuit in O(|p|) time.

Note that if we were to add an additional deterministic sum unit over many omni-compatible circuits
built in this way, we would retrieve a mixture of truncated exponentials [32}|55]. This is the largest
class of tractable exponentials we know so far, and enlarging its boundaries is an open problem.

More operators? Our compositional atlas is now complete. In fact, if we were to add an additional
circuit operator to the atlas, it would have to take the form of the already discussed operators. First,
we require from any functional f to be applied to a circuit p(X) to yield a smooth and decomposable
circuit f(p(X)) in order to admit tractable integration and to be added to our atlas. To that end,
as usual we can assume to apply f to the input units of p and obtain tractable representations
for the new input units; this is generally the case for simple parametric input functions. Next,
we would require f to decompose over products and over sums. In other words, we first need
that f(p1(X1) - p2(Xz2)) can be broken down to either a product f(p;(X1)) - f(p2(Xs2)) or sum
f(p1(X1)) + f(p2(X2)). Furthermore, we want f to similarly decompose over sum units; that is,
f(p1(X1) + p2(Xs)) also yields a product or sum of f(p1(X7)) and f(p2(X2)). As the next lemma
states, a non-linear function f that satisfies either of the above two conditions must be a power,
logarithmic, or exponential function.

Lemma 3.8. Let f be a continuous function. If f : R — R satisfies f(x +vy) = f(x) + f(y) then
it is a linear function B - x; if f : Ry — Ry satisfies f(x -y) = f(x) - f(y), then it takes the form
2P ifinstead f : Ry — R satisfies f(x -y) = f(z) + f(y), then it takes the form (log(x); and if
f: R — Ry satisfies that f(x +y) = f(x) - f(y) then it is of the form exp(8 - x), for a certain
B eR

4 ... to Complex Compositional Queries

In this section, we show how our atlas of simple tractable operators can be effectively used to
systematically find a tractable model class for any advanced query that comprises these operators.



Table 2: Tractability and hardness of information-theoretic queries over circuits. Tractability given
some conditions over the input circuits; computational hardness when some of these are unmet.

Query Tract. Conditions  Hardness Reference
CROSS ENTROPY —[p(x)logg(x) dX Cmp, ¢ Det #P-hard w/o Det Thm. C.1
SHANNON ENTROPY —> p(x)log p(x) Sm, Dec, Det coNP-hard w/o Det  [Thm. C.2!

. (1—a) tlog [p*(z) dX,a €N SD #P-hard w/o SD hm. C.5
RENYI ENTROPY (1—a) tlog [p*(x) dX,a € Ry Sm, Dec, Det #P-hard w/o Det hm. C.6
MUTUAL INFORMATION Jp(z, y)log(p(z,y)/(p(x)p(y))) Sm, SD, Det* coNP-hard w/o SD hm. C.3
KULLBACK-LEIBLER DIV. [p()log(p(x)/q(x))dX Cmp, Det #P-hard w/o Det hm. C.4

o (1—a)"tlog [p*(x)g'~*(x) dX,a € N Cmp, g Det #P-hard w/o Det hm. 4.TK{C.7
RENYI'S ALPHA DIV. (1—a) tlog [p*(z)g'~*(x) dX,a € R Cmp, Det #P-hard w/o Det hm. 4.1KC.7
ITAKURA-SAITO DIV. Jlp(x)/q(x) —log(p(x)/q(x)) — 1]d X Cmp, Det #P-hard w/o Det hm. C.8
CAUCHY-SCHWARZ DIV. ~log —Ap@a@)dX Cmp #P-hard w/o Cmp  [Thm. C.9

[p?(x)dX [¢? (@)dX
SQUARED LOSS J(p(z) — q(z))*d X Cmp #P-hard w/o Cmp hm. C.10|

We will show its practical utility by quickly coming up with tractability proofs as well as distilling
efficient algorithms for several entropy and divergence queries that are largely used in ML. We will
then discuss how our discovered tractable circuit classes subsume some previously known results in
the literature and prove novel hardness results for when the structural properties of these circuits are
unmet. summarizes our results.

We now showcase how a short tractability proof can be easily distilled, using Rényi’s a-
divergenceﬂ [40] as an example. Note that no tractable algorithm was available for it yet. A
proof can be built by inferring the sufficient conditions to tractably compute each operator in the
pipeline—starting from the last before the integral and proceeding backwards according to

Theorem 4.1 (Tractable alpha divergence). The Rényi’s a-divergence between two distributions p
and g, defined as (1 — o)~ ' log [p*(z)q' ~*(x) dX, can be computed exactly in O(|p|* |q|) time for
a € Nya > 1ifp and q are compatible and q is deterministic, or in O(|p| |q|) time for o € R, a0 # 1
if p and q are both deterministic and compatible.

Proof. A circuit pipeline for Rényi’s a-divergence involves first computing » = p® and s = ¢'~¢,

then t = r - s and finally integrate itE| Therefore we require ¢ to be a smooth and decomposable
circuit (Prop. 2.1)), which in turn requires r and s to be compatible (Thm. 3.2). To conclude the
proof, we need to compute two compatible circuits r and s in polytime, which can be done according
to[Thm. 3.5|or [Thm. 3.3|depending on the value of a.. As these theorems state, p® and ¢~ will
be compatible with p and ¢ , respectively, with sizes O(|p|”) and O(|q|) for a natural power « or
O(|p|) and O(|q|) for a real-valued cv. As such, ¢ could be computed in O(|p|” |g|) time for « € N

O

or O(|p| |q|) for o € R ([Thm. 3.2).

We leave the formal theorems and proofs for the other queries listed in to in the
Appendix for space constraints. We remark again that our technique can be used beyond this query
list and can be applied to any complex query that involves a pipeline comprising the operations we
discussed in[Sec. 3| and culminating in an integration.

Shannon entropy Smooth, decomposable and deterministic PCs enable the exact computation of
Shannon entropy and this tractability result translates to bounded-treewidth PGMs such
as Chow-Liu trees and polytrees as they are special cases (Sec. 2)). Our framework provides a more
succinct tractability proof for the computation of Shannon entropy derived by Shih and Ermon [44]],
which we complete by demonstrating in [Thm. C.2]that it is coNP-hard for non-deterministic PCs.

Rényi entropy For non-deterministic PCs we can employ the tractable computation of Rényi entropy
of order o € N [40], which recovers Shannon Entropy for &« — 1. As the logarithm is taken after
integration of the power circuit, the tractability and hardness follow directly from those of the power

operation and[3.3).

“Several alternative formulations of a-divergences can be found in the literature such as Amari’s [31] and
Tsallis’s [34] divergences. However, as they share the same core operations—real powers and products of
circuits—our results easily extend to them as well.

Note that all the operations outside integration are tractable, therefore we can skip them.




Table 3: Efficient algorithms for several query classes quickly distilled using our compositional
atlas. Times in seconds to compute the Shannon entropy (ENT), cross-entropy (XENT), Kullback-
Leibler divergence (KLD), Alpha divergence (AlphaDiv) for o = 1.5, Rényi entropy (RényiEnt), and
Cauchy-Schwarz divergence (CSDiv) over the circuits learned from 7 real-world datasets (complete
results for 10 datasets in by using algorithms distilled by our pipelines and comparing them to
the highly-optimized implementations of the ENT [44] and KLD [28]] algorithms available in Juice.jl
[12]. No tractable implementation was available for XENT, AlphaDiv, RényiEnt, and CSDiv.

DATASET ENT KLD XENT ALPHADIV RENYIENT CSDiv
OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE

KDD 0.157 0.001 3.154 0.790 2.180 - 0.885 - 0.016 - 1.136
PLANTS 0.679 0.005 3.983 3.909 3.739 - 1.160 - 0.088 - 1.572
AUDIO 0.406 0.003 2.736 1.681 1.873 - 0.537 - 0.029 - 0.771
JESTER 0.764 0.003 1.019 0.432 0.805 - 0.351 - 0.024 - 0.476
NETFLIX 0.106 0.002 0.352 0.175 0.264 - 0.100 - 0.017 - 0.201
DNA 4.365 0.027 64.664 220.377 52.997 - 15.609 - 0.255 - 22.901
AD 0.193 0.007 0.346 0.046 0.281 - 0.151 - 0.031 - 0.207

Cross entropy As hinted by the presence of a logarithm, the cross entropy is #P-hard to compute
without determinism, even for compatible PCs (Thm. C.T)). Nevertheless, given our atlas the cross
entropy can be tractably computed in O(|p| |q|) if p and ¢ are deterministic and compatible.

Mutual information Let a joint distribution p(X,Y) and its marginals p(X) and p(Y') be repre-
sented as PCs. Then the mutual information (MI) over these three PCs can be computed via a pipeline
involving product, quotient, and log operators and it is tractable if all circuits are compatible and
deterministic. On the other hand, if the marginal distributions cannot be represented as compact

deterministic PCs, we prove it to be coNP-hard (Thm. C.3).

Divergences Liang and Van den Broeck [28] proposed an efficient algorithm to compute the KLD
tailored for PSDDs. This has been the only tractable divergence available for PCs so far. We greatly
extend this panorama with our atlas by introducing Rényi’s a-divergences which generalize several
other divergences such as the KLD when o — 1, Hellinger’s squared divergence when ov =271,
and the X'2-divergence when a =2 [16]]. As states, they are tractable for compatible and
deterministic PCs, as is the Itakura-Saito divergence [53]] (Thm. C.8). For non-deterministic PCs,
we characterize the tractability of the squared loss and the Cauchy-Schwarz divergence [19]. The
latter has applications in mixture models for approximate inference [46]] and has been derived in
closed-form only for mixtures of simple parametric forms like Gaussians [22], Weibull and Rayligh
distributions [33]]. Our results generalize them to deep mixture models [38]].

Expectation queries Among other complex queries that can be abstracted into the general form of
an expectation of a circuit f w.r.t. a PC p, i.e., Expx) [f()], there are the moments of distributions,
such as means and variances. They can be efficiently computed for any smooth and decomposable PC,
as f is an omni-compatible circuit (Prop. D.T)). This result generalizes the moment computation for
simple models such as GMMs and HMMs as they can be encoded as smooth and decomposable PCs
(Sec. 2)). If f is the indicator function of a logical formula, the expectation computes its probability
w.r.t. the distribution p. Choi et al. [4] proposed an algorithm tailored to formulas f over binary
variables, encoded as SDDs [[14] w.r.t. distributions that are PSDDs. We generalize this result to mixed
continuous-discrete distributions encoded as structured-decomposable PCs that are not necessarily
deterministic and to logical formulas in the language of satisfiability modulo theories [2] over linear
arithmetics with univariate literals (Prop. D.2). Lastly, if f encodes constraints over the output
distribution of a deep network we retrieve the semantic loss [54]. If f encodes a classifier or a
regressor, then E, [ f] refers to computing its expected predictions w.r.t. p [24]. Our results generalize
the results reported in Van den Broeck et al. [47] such as computing the expectations of decision trees
and their ensembles [25]] (cf. as well as those of deep regression circuits [23]E]

S Experiments

We prototyped the tractable operators defined in as subroutines in Julia in the Juice.jl frame-
work [12] to showcase how our modular atlas can practically and quickly help implement tractable

6Despite the name, regression circuits do not conform to our definition of circuits in|Def. 2.1} Nevertheless,
we can translate them to our format in polytime as we illustrate in[Alg. 8]in the Appendix.



algorithms for novel query classes. E] To this extent, we distilled algorithms for the Shannon, Rényi,
and cross entropies and for the KL, Alpha, and Cauchy-Schwarz divergences. We then ran them on
deterministic and structured-decomposable circuits learned as in Dang et al. [11] from 20 publicly
available real-world benchmark datasets [29, 48]].

Tab. 3| shows the time taken to build and execute the pipelines on a subset of the datasets, while
Tab. 4]and [Tab. 3]in[Sec. E|in the Appendix report all the intermediate circuit sizes in their respective
pipelines and times for all datasets. First, the intermediate circuits created in the pipeline do not
blow up in size: as predicted by our theoretical analysis, the size of the logarithm circuit grows by
a linear factor (~3-4x). Moreover, the size of the product circuit p - ¢ is only slightly larger than
max(|p|, |¢|) when p and ¢ are deterministic, much smaller than the theoretical bound of O(|p| |q]).

In terms of execution time, our algorithms run in less than a second for most circuits and peak at
slightly more than one minute to compute a pipeline of the KLD, whose output circuit has more than
3 million edges on the DNA dataset (Tab. 4). A custom and highly optimized implementation of the
KLD for PSDDs by Liang and Van den Broeck [28]] runs up to ten times faster on smaller circuits but
surprisingly takes ~220 seconds for DNA, highlighting that our compositional atlas is a promising
way to distill tractable algorithms. We emphasize that the aim of these experiments is not to distill the
fastest algorithm for a query class, but to demonstrate that our compositional framework empowers
practitioners to quickly distill new tractable algorithms for queries that were not available before,
such as the Rényi entropy and « and Cauchy-Schwarz divergences.

6 Discussion and Conclusions

This work introduced a unified framework to reason about tractable model classes for complex queries
composed of simpler operations. This rich atlas of operators can be used to solve many queries
common in probabilistic ML and Al as well as novel inference scenarios.

Darwiche and Marquis [[15]] is the work most closely related to ours: they define operators over
logical circuits, encoding Boolean functions as computational graphs with AND and OR gates,
for which structural properties analogous to those discussed in[Sec. 2| can be defined. Our results
generalize their work on logical tractable operators such as disjunctions and conjunctions—the
analogous to our (deterministic) sums and products—while also extending it to powers, logarithms
and exponentials as well as complex queries such as divergences, which have no direct counterpart in
the logical domain. Algorithms to tractably multiply two probabilistic models have been proposed
for probabilistic decision graphs (PDGs) first [17] and PSDDs later [43]]. Despite the different syntax,
both model classes can be encoded as structured-decomposable and deterministic circuits in our
language [[8]. Historically, algorithms for the tractable product of PDGs and PSDDs relied on a special
case of compatibility, when two structured-decomposable models exactly share the same hierarchical
scope partitioning in terms of special graphical representations such as pseudo forests [[17, /18] and
vtrees [37]]. They also implicitly entangle compatibility with determinism. As we showed in[Thm. 3.2
compatibility is sufficient for tractable multiplication, which interestingly, has been noted in the
context of logical circuits [37]]. As discussed in the previous section, many algorithms tailored for
PSDDs [4} 43| 23] can therefore be generalized to non-deterministic distributions in our framework.

Our property-driven analysis closes many open questions about the tractability and hardness of
queries for several model classes that are special cases of circuits. At the same time, our hardness
results might limit its general applicability by restricting tractable inference of some query classes to
only certain inputs (Sec. 3). However, we see this as an opportunity: now that we can analyze which
operators in a pipeline are tractable or not, we could substitute the latter by an approximate inference
algorithm distilled from the pipeline. Lastly, we plan to extend our analysis to other queries involving
not only integration but also maximization—that is, understanding what are the operators that make
MAP inference over probabilistic circuits or optimization over general circuits tractable.
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"Code publicly available at https://github.com/UCLA-StarAl/circuit-ops-atlas!
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Algorithm 1 SUPPORT(p, cache)

1: Input: a smooth, deterministic, and decomposable circuit p over variables X and a cache for
memorization

2: Output: a smooth, deterministic, and decomposable circuit s over X encoding s(x) =

[z € supp(p)]

if p € cache then return cache(p)

if p is an input unit then s < INPUT([x € supp(p)], #(p))

else if p is a sum unit then s < SUM({SUPPORT(p;, cache)}yi(lp)l7 {I}Lii(lp)l)

else if p is a product unit then s < PRODUCT({SUPPORT(p;, cache)}‘iii(lp)| b
cache(p) « s
return s

A A S

A Useful Sub-Routines

This section introduces the algorithmic construction of gadget circuits that will be adopted in our
proofs of tractability as well as hardness. We start by introducing three primitive functions for
constructing circuits—INPUT, SUM, and PRODUCT.

o INPUT({,, ¢(p)) constructs an input unit p that encodes a parameterized function /,, over variables
¢(p). For example, INPUT([X = True], X) and INPUT([X = False], X) represent the positive
and negative literals of a Boolean variable X, respectively. On the other hand, INPUT(N (1, o), X)
defines a Gaussian pdf with mean p and standard deviation o over variable X as an input function.

o SUM({p;}¥_,,{0:}%_,) constructs a sum unit that represents the weighted combination of k circuit
units {p; }¥_, encoded as an ordered set w.r.t. the correspondingly ordered weights {6;}%_, .

e PRODUCT({p; }¥_,) builds a product unit that encodes the product of k circuit units {p; }%_, .

A.1 Support circuit of a deterministic circuit

Given a smooth, decomposable, and deterministic circuit p(X), its support circuit s(X) is a smooth,
decomposable, and deterministic circuit that evaluates 1 iff the input « is in the support of p (i.e.,
@ € supp(p)) and otherwise evaluates 0, as defined below.

Definition A.1 (Support circuit). Let p be a smooth, decomposable, and deterministic PC over
variables X. Its support circuit is the circuit s that computes s(x) = [x € supp(p)], obtained by
replacing every sum parameter of p by 1 and every input distribution ! by the function [z € supp(l)].

A construction algorithm for the support circuit is provided in[Alg. T| This algorithm will later be
useful in defining some circuit operations such as the logarithm.

A.2 Circuits encoding uniform distributions

We can build a deterministic and omni-compatible PC that encodes a (possibly unnormalized) uniform
distribution over binary variables X = {X,..., X, }: i.e., p(x) = ¢ for a constant ¢ € R for all
x € val(X). Specifically, p can be defined as a single sum unit with weight c that receives input from
a product unit over n univariate input distribution units that always output 1 for all values val(X;).
This construction is summarized in[Alg. 2] It is a key component in the algorithms for many tractable
circuit transformations/queries as well as in several hardness proofs.

A.3 A circuit representation of the #3SAT problem

We define a circuit representation of the #3SAT problem, following the construction in Khosravi et al.
[23]. Specifically, we represent each instance in the #3SAT problem as two poly-sized structured-
decomposable and deterministic circuits pg and p., such that the partition function of their product
equals the solution of the original #3SAT problem.

#3SAT is defined as follows: given a set of n boolean variables X = {X3,...,X,,} and a CNF
that contains m clauses {c1, ..., ¢, } (each clause contains exactly 3 literals), count the number of
satisfiable worlds in val(X).
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Algorithm 2 UNTFORMCIRCUIT(X, ¢)

1: Input: a set of variables X and constant ¢ € R..
2: Output: a deterministic and omni-compatible PC encoding an unnormalized uniform distribution
over X.
n < {}
fori = 1to |X]| do

m <« {}

for x; in val(X;) do

m < m U {INPUT([X; = z;], X;)}

n < nU{Sum(m, {1}}2{*))}

return SUM({PrRODUCT(n)}, {c})

R AN

For every variable X; in clause c;, we introduce an auxiliary variable X;;. Intuitively, { X;;}7*, are
copies of the variable X, one for each clause. Therefore, for any 4, { X;; }J2; share the same value
(i.e., true or false), which can be represented by the following formula j3:

8= /\(Xil S Xpe e Xip).
i=1

Then we can encode the original CNF in the following formula ~ by substituting X; with the
respective X;; in each clause:

yv= A\ VX,

J=1li:X;€¢(cj)

where ¢(c) denotes the variable scope of clause ¢, and [(X;;) denotes the literal of X; in clause c;.
Since 3 restricts the variables { X;;}" ; to have the same value, the model count of 3 A  is equal to
the model count of the original CNF.

We are left to show that both 5 and  can be compiled into a poly-sized structured-decomposable and
deterministic circuit. We start from compiling /3 into a circuit pz. Note that for each i, (X;; & --- &
Xim) has exactly two satisfiable variable assignments (i.e., all true or all false), it can be compiled as
a sum unit a; over two product units b;; and b;o (both weights of a are set to 1), where b;; takes inputs
from the positive literals {X;1,..., X} and b;s from the negative literals {—X;1,..., X}
Then pg is represented by a product unit over {a1, ..., a,}. Note that by definition this pg circuit is
structured-decomposable and deterministic.

We proceed to compile v into a polysized structured-decomposable and deterministic circuit p. .
Note that in #3SAT, each clause ¢; contains 3 literals. Therefore, for any j € {1,...,m},
Vx,es ¢) I(X,;) has exactly 7 models w.r.t. the variable scope ¢(c;). Hence, we compile
\/Xi,eqb(cj) I(X,;) into a circuit d;, which is a sum unit with 7 inputs {e;1,...,e;7}. Each ejp
is constructed as a product unit over variables {X1;,...,X,;} that represents the h-th model of
clause ¢;. More formally, we have e;;, <— PRODUCT({gi;n}};), where g;;; is a sum unit over
literals X;; and —.X;; (with both weights being 1) if ¢ & ¢(c;) and otherwise g, is the literal unit
corresponds to the h-th model of clause c;. The circuit p., representing the formula -y is constructed
by a product unit with inputs {d; };”zl By construction this circuit is also structured-decomposable
and deterministic.

B Circuit Operations

This section formally presents the tractability and hardness results w.r.t. circuit operations summarized
in[Tab. T}—sums, products, quotients, powers, logarithms, and exponentials. For each circuit operation,
we provide both its proof of tractability by constructing a polytime algorithm given sufficient structural
constraints and novel hardness results that identify necessary structural constraints for the operation
to yield a decomposable circuit as output.

Throughout this paper, we will show hardness of operations to output a decomposable circuit by
proving hardness of computing the partition function of the output of the operation. This follows from

15



the fact that we can smooth and integrate a decomposable circuit in polytime (Prop. 2.1)), thereby
making the former problem at least as hard as the latter.

For the tractability theorems, we will assume that the operation referenced by the theorem is tractable
over input units of circuit or pairs of compatible input units. For example, for we assume
tractable product of input units sharing the same scope and for[Thm. 3.5| we assume that the powers
of the input units can be tractably represented as a single new unit. Note that this is generally easy
to realize for simple parametric forms e.g., multivariate Gaussians and for univariate distributions,
unless specified otherwise.

Moreover, in the following results, we will adopt a more general definition of compatibility that
can be applied to circuits with different variable scopes, which is often useful in practice. Formally,
consider two circuits p and ¢ with variable scope Z and Y. Analogous to[Def. 2.3] we say that p and
q are compatible over variables X = ZNY if (1) they are smooth and decomposable and (2) any pair
of product units n € p and m € ¢ with the same overlapping scope with X can be rearranged into
mutually compatible binary products. Note that since our tractability results hold for this extended
definition of compatibility, they are also satisfied under [Def. 2.5]

B.1 Sum of Circuits

The hardness of the sum of two circuits to yield a deterministic circuit has been proven by Shen et al.
[43] in the context of arithmetic circuits (ACs) [[15)]. ACs can be readily turned into circuits over
binary variables according to our definition by translating their input parameters into sum parameters
as done in Rooshenas and Lowd [41]].

A sum of circuits will preserve decomposability and related properties as the next proposition details.

Proposition B.1 (Closure of sum of circuits). Let p(Z) and q(Y) be decomposable circuits. Then
their sum circuit s(ZUY) = 61 -p(Z) + 05 - q(Y) for two reals 01,05 € R is decomposable. If p and
q are structured-decomposable and compatible, then s is structured-decomposable and compatible
with both p and q. Lastly, if both inputs are also smooth, s can be smoothed in polytime.

Proof. If p and ¢ are decomposable, s is also decomposable by definition (no new product unit
is introduced). If they are also structured-decomposable and compatible, s would be structured-
decomposable and compatible with p and ¢ as well, as summation does not affect their hierarchical
scope partitioning. Note that if one input is decomposable and the other omni-compatible, then s
would only be decomposable.

If Z =Y then s is smooth; otherwise we can smooth it in polytime [13| 45}, by realizing the circuit
s(x) =61 - p(z) - [[Q(w|y\z) # 0]+ 62 - q(y) - [[p(x|z\y) # 0]

where [¢( |y z) # 0] (resp. [p(@|z,y) # 0] ) can be encoded as an input distribution over variables

Y \ Z (resp.Z \ Y). Note that if the supports of p(Z \ Y) and ¢(Y \ Z) are not bounded, then
integrals over them would be unbounded as well. O

B.2 Product of Circuits

Theorem [3.1] (Hardness of product). Let p and ¢ be two structured-decomposable and deterministic
circuits over variables X. Computing their product m(X) = p(X) - ¢(X) as a decomposable circuit
is #P-hard

Proof. As noted earlier, we will prove hardness of computing the product by showing hardness
of computing the partition function of a product of two circuits. In particular, let p and ¢ be two
structured-decomposable and deterministic circuits over binary variables X. Then, computing the
following quantity is #P-hard:

> p@)-q@). (MULPC)

xEval(X)

8Note that this implies that product of decomposable circuits is also #P-hard, as decomposability is a weaker
condition than structured-decomposability. The hardness results throughout this paper translate directly when
input properties are relaxed.
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The following proof is adapted from the proof of Thm. 2 in Khosravi et al. [23]]. We reduce the #3SAT
problem deﬁn which is known to be #P-hard, to MULPC. Recall that ps and p., as
constructed in[Sec. A.3| are structured-decomposable and deterministic; additionally, the partition
function of pg - p, is the solution of the corresponding #3SAT problem. In other words, computing
MULPC of two structured-decomposable and deterministic circuits pg and p., exactly solves the
original #3SAT problem. Therefore, computing the product of two structured-decomposable and
deterministic circuits is #P-hard. O

Theorem (3.2 (Tractable product of circuits). Let p(Z) and ¢(Y) be two compatible circuits over
variables X = Z N'Y. Then, computing their product m(X) = p(Z) - ¢(Y) as a decomposable
circuit can be done in O(|p||¢|) time. If both p and ¢ are also deterministic, then so is m, moreover
if p and ¢ are structured-decomposable then m is compatible with p (and ¢) over X.

Proof. The proof proceeds by showing that computing the product of (i) two smooth and compatible
sum units p and ¢ and (ii) two smooth and compatible product units p and ¢ given the product
circuits w.r.t. pairs of child units from p and ¢ (i.e., Vr € in(p)s € in(q), (r-s)(X)) takes time
O(Jin(p)| lin(q)|)- Then, by recursion, the overall time complexity is O(|p| |g¢|). illustrates the
overall process in detail.

If p and g are two sum units defined as p(x) = 3 ;cin () 0ipi(®) and q(x) = 3,0, 0545 (),
respectively. Then, their product m () can be broken down to the weighted sum of |in(p)|-|in(q)|
circuits that represent the products of pairs of their inputs:

m(x)= | > Oipi(x) DT g | = D D 0:8)(pigy) ().
i€in(p) J€in(q) i€in(p) j€in(q)

Note that this Cartesian product of units is a deterministic sum unit if both p and ¢ were deterministic
sum units, as supp(p;q;) =supp(p;) N supp(g;) are disjoint for different 4, j.

If p and g are two product units defined as p(X) = p1(X1)p2(X2) and ¢(X) = ¢1(X1)q2(X2),
respectively. Then, their product m(x) can be constructed recursively from the product of their
inputs:

m(x) = p1(z1)p2(x2) - ¢1(21)q2(x2) = p1(z1)q1(x1) - pa(x2)g2(T2) = (Prq1)(%1) - (P2g2)(T2)-
Note that by this construction m retains the same scope partitioning of p and g, hence if they were
structured-decomposable, m will be structured-decomposable and compatible with p and q. O

Possessing additional structural constrains can lead to sparser output circuits as well as efficient
algorithms to construct them. First, if one among p and ¢ is omni-compatible, it suffices that the other
is just decomposable to obtain a tractable product, whose size this time is going to be linear in the
size of the decomposable circuit.

Corollary B.1. Let p be a smooth and decomposable circuit over X and q an omni-compatible
circuit over X comprising a sum unit with k inputs, hence its size is k |X|. Then, m(X) = p(X)q(X)
is a smooth and decomposable circuit constructed in O(k |p|) time.

Second, if p and ¢ have inputs with restricted supports, their product is going to be sparse, i.e., only
a subset of their inputs is going to yield a circuit that does not constantly output zero. Note that
in[Alg. 3] we can check in polytime if the supports of two units to be multiplied are overlapping
by a depth-first search (realized with a Boolean indicator s in[Alg. 3)), thanks to decomposability.
Therefore, for two compatible sum units p and ¢ we will effectively build a number of units that is

O(H{(pi, q5)Ipi €in(p), ¢ €in(q), supp(pi) Nsupp(q;) # 0} ).

In practice, this sparsifying effect will be more prominent when both p and ¢ are deterministic. This
is because having disjoint supports is required for deterministic circuits. This “decimation” of product
units will be maximum if p and q partition the support in the very same way, for instance when we
have p = ¢, i.e., we are multiplying one circuit with itself, or we are dealing with a logarithmic
circuit (cf.[Sec. B.3). In such a case, we can omit the depth-first check for overlapping supports of
the product units participating in the product of a sum unit. If both p and ¢ have an identifier for their
supports, we can simply check for equality of their identifiers. This property and algorithmic insight
will be key when computing powers of a deterministic circuit and its entropies (cf. [Sec. C.2)), as it
would suffice the input circuit p to be decomposable (cf. to obtain a linear time complexity.
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Algorithm 3 MULTIPLY(p, ¢, cache)

1: Input: two circuits p(Z) and ¢(Y) that are compatible over X = Z N'Y and a cache for
memoization
2: Output: their product circuit m(Z UY) = p(Z)q(Y)
3: if (p, q) € cache then return cache(p, q)
4: if ¢(p) N ¢(q) = 0 then
5: m < PRODUCT({p, ¢}); s < True
6: else if p, g are input units then
7: m <+ INPUT(p(Z) - ¢(Y),ZUY)
8: s < [supp(p(X)) Nsupp(q(X)) # 0]
9: else if p is an input unit then
100 n <« {};s« False //q(Y) =3, 0;¢;(Y)
11:  for j = 1to|in(q)| do
12: n’, s’ <~ MULTIPLY(p, ¢;, cache)
13: n+<nU{n'}; s« svs
14:  if s then m <+ SUM(n, {Hg}lj'":(lq)‘) else m «+ null
15: else if ¢ is an input unit then
16:  n< {};s <« False //p(Z) =), 0:p:(Z)
17:  for i =1to |in(p)| do
18: n', s’ < MULTIPLY (p;, ¢, cache)
19: n<nU{n'}; s«<svs
20:  if s then m < SuM(n, {97;}?;(11))‘) else m < null
21: else if p, ¢ are product units then
22:  n < {};s <+ True
23: {pi,qi}¥_, < sortPairsByScope(p, ¢, X)
24:  fori=1tokdo
25: n', s’ < MULTIPLY (p;, ¢;, cache)
26: n<nU{n'}; s« sns
27:  if s then m < PRODUCT(n) else m + null
28: else if p, ¢ are sum units then
29: n<+{}; w<+ {}; s+ False
30:  fori=1to|in(p)|,j = 1to|in(q)| do
31: n', s’ <= MULTIPLY(p;, ¢;, cache)
32: n<nUnw s wU{0;0;};s < sVs
33:  if s then m + SUM(n,w) else m + null
34: cache(p, q) + (m,s)
35: returnm, s

B.3 Power Function of Circuits

Theorem [3.3] (Natural powers). If p is a structured-decomposable circuit, then for any a € N, its
power can be represented as a structured-decomposable circuit in O(|p|®) time. Otherwise, if p is
only smooth and decomposable, then computing p*(X) as a decomposable circuit is #P-hard.

roof. e proof tor tractability easi OlIOWS irectly a 1ng the product operation repeate .
Proof. The proof fi bility easily follows by directly applying the product operation repeatedly.

We prove hardness for the special case of discrete variables, and by showing the hardness of computing
the partition function of p?(X). In particular, let X be a collection of binary variables and let p be a
smooth and decomposable circuit over X, then computing the quantity

> P (POW2PC)
zeval(X)

is #P-hard.

The proof builds a reduction from the #3SAT problem, which is known to be #P-hard. We employ the
same setting of [Sec. A.3| where a CNF over n Boolean variables X = { X7, ..., X, } and containing
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Algorithm 4 SORTPAIRSBYSCOPE(p, ¢, X)

1: Input: two decomposable and compatible product units p and g, and a variable scope X.
Output: Pairs of compatible sum units {(p;, ¢;)}5_;.

children_p + {pz}lm , children_g « {qz}l'" al
pairs < {}. // “pairs” stores circuit pairs with matched scope.

emp_p {3127, cmp_g — {327
// cmp_pli] (resp. cmp_g[j]) stores the children of ¢ (resp. p) whose scopes are subsets of p;’s
(resp. g;’s) scope.

6: fori=1to |in(p)| do

7. forj=1to|in(q)| do

8: if o(p;) N X = ¢(g;) N X then

9: pairs.append((pi, g;))

10: children_p.pop(p;), children_g.pop(g;)
11: else if ¢(p;) N X C ¢(g;) N X then

12: cmp_g[j].append(p;)

13: children_p.pop(p;), children_g.pop(g;)
14: else if ¢(¢;) N X C ¢(p;) N X then

15: cmp_pli].append(q;)

16: children_p.pop(p;), children_g.pop(q;)

17: fori = 1to |in(p)| do

18:  if len(cmp_p[i]) # 0 then

19: s < SuM({ProbpuCT(cmp_p[i])},{1})

20: pairs.append((p;, s))

21: for j = 1to |in(q)| do

22:  iflen(cmp_g[j]) # O then

23: r < SUM({PrRODUCT(cmp_g[j])},{1})

24: pairs.append((r, g;))

25: for r, s in zip(children_p, children_g) do

26:  pairs.append((r, s))

27: if len(children_p) > len(children_g) then

28:  for i = len(children_g) + 1 to len(children_p) do
29: pairs.append((children_p[i], children_g[1]))

30: else if len(children_p) < len(children_g) then

31:  for j = len(children_p) + 1 to len(children_g) do
32: pairs.append((children_pl[1], children_g[j]))

33: return pairs

m clauses {ci, ..., ¢}, each with exactly 3 literals, is encoded into two structured-decomposable
and deterministic circuits pg and p, over variables X = {X11,..., X1m, ..., Xn1,. -, Xnm -

Then, we construct circuit p, as the sum of pg and p., i.e., po (&) := pg(&) + p(&). By definition
Dq 18 smooth and decomposable, but not structured-decomposable. We proceed to show that if we

can represent p2 (&) as a smooth and decomposable circuit in polytime, we could solve POW2PC
and hence #3SAT. That would mean that computing POW2PC is #P-hard.

By definition, p?, (&) = (ps(&) + py(&))* = p3(&) + p3 (&) + 2ps(%&) - p, (&), and hence

Soopk@ = D pi@+ > @+ Y. ps@) - py(@).

&eval(X) #eval(X) #eval(X) #eval(X)

Since pg and p, are both structured-decomposable and determlmstlc the first two summations over
the squared circuits can be computed in time O(|pg| +[p|) (see[Thm. 3.5). It follows that if we could
efficiently solve POW2PC we could then solve the that third summation, i.e., >, c %) Ps(Z) -

p~(2). However, since such a summation is the instance of MULPC between pg and p., reduced from
#3SAT (see[Thm. 3.1)), it would mean that we could solve #3SAT. We can conclude that computing
POW2PC is #P-hard. O
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Theorem B.1 (Hardness of natural power of a structured-decomposable circuit). Let p be a structured-
decomposable circuit over variables X. Let k be a natural number. Then there is no polynomial
f(z,y) such that the power p* can be computed in O(f(|p|, k)) time unless P=NP.

Proof. We construct the proof by showing that for a structured-decomposable circuit p, if we could
compute

> ). (POWKPC)

xeval(X)

in O(f(|p|,k)) time, then we could solve the 3SAT problem in polytime, which is known to be
NP-hard.

The 3SAT problem is defined as follows: given a set of n Boolean variables X = {X7,..., X, }
and a CNF that contains m clauses {c1, . .., ¢ }, each one containing exactly 3 literals, determine
whether there exists a satisfiable configuration in val(X).

We start by constructing m gadget circuits {d; }.; for the m clauses such that d; () evaluates to L

. . . . m
iff x satisfies ¢; and otherwise evaluates to 0, respectively.

Since each clause ¢; contains exactly 3 literals, it comprises exactly 7 models w.r.t. the variables
appearing in it, i.e., its scope ¢(c;). Therefore, following a similar construction in [Sec. A.3| we
can compile d; as a weighted sum of 7 circuits that represent the 7 models of ¢;, respectively. By

choosing all weights of d; as % the circuit d; outputs % iff c; is satisfied; otherwise it outputs 0.

The gadget circuits {d, };”:1 are then summed together to represent a circuit p. That is, p =
SuM({d;}72;,{1}72;). In the following, we complete the proof by showing that if the power circuit
p* (we will pick later & = [max(m,n)? - log 2]) can be computed in O(f(|p|,k)) time, then the
corresponding 3SAT problem can be solved in O(f(|p|, k)) time.

If the original CNF is satisfiable, then there exists at least 1 world such that all clauses are satisfied.
In this case, all circuits in {d; }2; will evaluate L Since p is the sum of the circuits {d; Pt it will
evaluate 1 for any world that satisfies the CNF. We obtain the bound

Z pk(ac)>m~l:1.

m
xeval(X)

In contrast, if the CNF is unsatisfiable, each variable assignment & € val(X) satisfies at most m — 1
clauses, so the circuit p will output at most ’”T_l Therefore , we retrieve the following bound

m—1\"
Y @) < () |

m
xeval(X)

Then, we can retrieve a value for k to separate the two bounds as follows.

k -
-1 log(2—™ log 2 a
o () <1 @k>&_l)<:>k> nos (<:>)l<;>m-n-1og2,
m log 2— log(m) —log(m — 1)

m

where (a) follows the fact that log (-5 ) < —. Let | = max(m,n). If we choose k = [I?-log 2],

— m—1"
then we can separate the two bounds above.

Therefore, if there exists a polynomial f(x,y) such that the power p* (k = [I2 - log2]) can be
computed in O(f(|p|, k)) time, then we can solve 3SAT in O(f(|p|, %)) time since the CNF is
satisfiable iff 37 - .x) p*(z) > 1, which is impossible unless P=NP. O

Theorem [3.4] (Hardness of reciprocal of a circuit). Let p be a smooth and decomposable circuit
over variables X. Then computing p~ as a decomposable circuit is #P-hard, even if p is

structured-decomposable.

1
(X) ‘SUPP(ZD)

Proof. We prove it for the case of PCs over discrete variables. We will prove hardness of computing
the reciprocal by showing hardness of computing the partition of the reciprocal of a circuit. In
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particular, let X = {X,..., X} be a collection of binary variables and let p be a smooth and
decomposable PC over X, then computing the quantity

> L (INVPC)

xeval(X) p(m)
is #P-hard.
Proof is by reduction from the EXPLR problem as defined in [Thm. B.2| Similarly to [Thm. B.2}

the reduction is built by constructing a smooth and decomposable unnormalized circuit p(x) =
on . 1 4 2ne~(wot3l; witi)  The circuit p comprises a sum unit over two sub-circuits. The first
is a uniform (unnormalized) distribution over X defined as a product unit over n univariate input
distribution units that always output 1 for all values val(X;) (see|Sec. A.2|for a construction algorithm).
The second is an exponential of a linear circuit (Alg. 7) and encodes e~ (wot3; wiri) yia a product
unit over n univariate input distributions, where one of them encodes e™*°~"*** and the rest e~ *7%J
for j = 2,...,n. Both sub-circuits participates in the sum with parameters 2".

The size of the constructed circuit is linear in n, and INVPC of this circuit corresponds to the
solution of the EXPLR problem. If you can represent the reciprocal of this circuit as a decomposable
circuit, you can compute its marginals (including the partition function) which solves INVPC and
hence EXPLR. Furthermore, the circuit is also omni-compatible because mixture of fully-factorized
distributions. O

Theorem (Tractable real power of a deterministic circuit). Let p be a smooth, decomposable,
and deterministic circuit over variables X. Then, for any real number o € R, its restricted power,
defined as a(@)|g,p0(,) = P*(®)[x € supp(p)] can be represented as a smooth, decomposable, and

deterministic circuit over variables X in O(|p|) time. Moreover, if p is structured-decomposable,
then a is structured-decomposable as well.

Proof. The proof proceeds by construction and recursively builds a(x) \Supp(p). As the base case, we

can assume to compute the restricted a-power of the input units of p and represent it as a single new
unit. When we encounter a deterministic sum unit, the power will decompose into the sum of the
powers of its inputs. Specifically, let p be a sum unit: p(X) = >, ;) 0ipi(X). Then, its restricted

real power circuit a()lg,,,,) can be expressed as
(@) gupp(p) = Z 0;pi(x) | [z € supp(p)] = Z 02 (pi(z)) " [z € supp(p;)]-
i€in(p) i€in(p)

Note that this construction is possible because only one input of p will be non-zero for any input
(determinism). As such, the power circuit is retaining the same structure of the original sum unit.

Next, for a decomposable product unit, its power will be the product of the powers of its inputs.
Specifically, let p be a product unit: p(X) = p1(X1) - p2(Xz). Then, its restricted real power circuit
()| ypp(p) can be expressed as

a(m) |supp(p) = (pl (ml) %) ($2))a Hw € Supp(p)]]

= (p1(21))" [z € supp(p1)] - (p2(2))" [z € supp(p2)]-

Note that even this construction preserves the structure of p and hence its scope partitioning is retained
throughout the whole algorithm. Hence, if p were also structured-decomposable, then a would be
structured-decomposable. [Alg. 5]illustrates the whole algorithm in detail. O

B.4 Quotient of Circuits
Theorem B.2 (Hardness of quotient of two circuits). Let p and q be two smooth and decomposable

circuits over variables X, and let q(x) # 0 for every x € val(X). Then, computing their quotient
p(X)/q(X) as a decomposable circuit is #P-hard, even if they are compatible.
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Algorithm 5 POWER(p, o, cache)

1: Input: a smooth, deterministic and decomposable circuit p(X), a scalar « € R, and a cache for
memoization
Output: a smooth, deterministic and decomposable circuit a(X) encoding p*(X)|

if p € cache then return cache(p)
if p is an input unit then a < INPUT(p®(X)|,50(,) - (1))

supp(p)

else if p is a sum unit then a <~ SUM({POWER(p;, , cache)}yi(lp)‘), {9?}?2(1}3)')

else if p is a product unit then a < PRODUCT({POWER(p;, v, ,cache)}yi(lp)‘)
cache(p) < a
return a

A A R

Proof. This result follows from [Thm. 3.4]by noting that computing the reciprocal of a circuit is a
special case of computing the quotient of two circuits. In particular, let p be an omni-compatible
circuit representing the constant function 1 over variables X, constructed as in Then
computing the reciprocal of a structured-decomposable circuit ¢ as a decomposable circuit reduces to
computing the quotient p/q. O

Theorem B.3 (Tractable restricted quotient of two circuits). Let p and q be two compatible circuits
over variables X, and let q be also deterministic. Then, their quotient restricted to supp(q) can be
represented as a circuit compatible with p (and q) over variables X in O(|p| |q|) time. Moreover, if p
is also deterministic, then the quotient circuit is deterministic as well.

Proof. We know from that we can obtain the reciprocal circuit ¢! that is also compatible
with ¢ (and by extension p) in O(|g|) time. Then we can multiply p and ¢~ in O(|p| |q|) time
using to compute their quotient circuit that is still compatible with p and ¢. If p is also
deterministic, then we are multiplying two deterministic circuits and therefore their product circuit is

deterministic (Thm. 3.2). O

B.5 Logarithm of a PC

Theorem (Logarithms). (Tractability) Let p be a smooth, deterministic and decomposable PC
over variables X. Then its logarithm circuit, restricted to the support of p and defined as

, ~ flogp(z) ifx € supp(p)
(m)|supp(P) - 0 otherwise

for every « € val(X) can be represented as a smooth and decomposable circuit that shares the scope
partitioning of p in O(|p|) time. (Hardness) Otherwise, if p is a smooth and decomposable PC, then
computing its logarithm circuit [(X) := log p(X) as a decomposable circuit is #P-hard, even if p is
structured-decomposable.

We will provide the proofs for tractability and hardness separately below.

Proof of tractability. The proof proceeds by recursively constructing () \Supp(p). In the base case,

we assume computing the logarithm of an input unit can be done in O(1) time. When we encounter
a deterministic sum unit p(x) = 3¢ in(p| 0iPi (%), its logarithm circuit consists of the sum of (i)

the logarithm circuits of its child units and (ii) the support circuits of its children weighted by their
respective weights {6; }'Z:(lp I

l(m)\supp(m) = log Z O;pi(x) | - [x € supp(p)] = Z log (Qipi(:c)) [z € supp(p;)]

i€in(p) i€lin(p)|

= Z log 91' [[w S supp(p7)]] + Z li(m)|supp(pi) .

i€lin(p)| i€lin(p)|
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log 0y

supp(p2) é

Figure 3: Building the logarithmic circuit (right) for a deterministic PC (left) whose input units are
labeled by their supports. A single sum unit is introduced over smoothed product units and additional
dummy input units which share the same support across circuits if they have the same color.

For a smooth, decomposable, and deterministic product unit p(x) = p1 (x)p2 (), its logarithm circuit
can be decomposed as sum of the logarithm circuits of its child units:

U@) |upp(ar) = 108 (p1(®1)p2(22)) - [ € supp(p)]

= log p1(x1)[x € supp(p)] + log p2(x2)[ € supp(p)]
= logpi(z1)[z1 € supp(p1)][z2 € supp(p2)] + log p2(z2)[x2 € supp(p2)][z1 € supp(p1)]
= l(wl)lsupp(pl) sz € Supp(pg)]] + l(mz)lsupp(pg) [[331 € Supp(pl)ﬂ

Note that in both case, the support circuits (e.g., [z € supp(p)]) are used to enforce smoothness
in the output circuit. [Alg. 6illustrates the whole algorithm in detail, showing that the construction
of these support circuits can be done in linear time by caching intermediate sub-circuits while
calling Furthermore, the newly introduced product units, i.e., {(%1)|g,p0(,,) [2 € supp(p2)],
U(#2)|supp(p,) [®1 € supp(p1)], and the additional support input unit log ;[ € supp(p; )] share the
same support of p by construction. [Fig. 3illustrates this property with one example. This implies

that when a deterministic circuit and its logarithmic circuit are going to be multiplied, e.g., when
computing entropies (Sec. C.2)), we can check for their support to overlap in linear time (Alg. 3). [

Proof of hardness. We will prove hardness of computing the logarithm by showing hardness of
computing the partition function of the logarithm of a circuit. Let X = {X7,..., X,,} be a collection
of binary variables, and p a smooth and decomposable PC over X where p(x) > 0 for all x € val(X).
Then computing the quantity

> logp(x) (LOGPC)
xeval(X)
is #P-hard.
The proof is by reduction from #NUMPAR, the counting problem of the number partitioning problem
(NUMPAR) defined as follows. Given n positive integers k1, . . . , k,, we want to decide whether there

exists a subset S C [n] such that ), s ki = 3,55 ki- NUMPAR is NP-complete, and #NUMPAR
which asks for the number of solutions is known to be #P-hard.

We will show that we can solve #NUMPAR using an oracle for LOGPC, which will imply that
LOGPC is also #P-hard. First, consider the following quantity SL for a given weight function w(-):

1 2+ e v
SLi= > loglo(w(@)+1)= > log <1+e—(w> + 1) = Y log (1+e—“<m>>

xeval(X) xeval(X) xeval(X)
= Z log(2 + e~ @) — Z log(1 + e~ @),
zeval(X) xeval(X)

Similar to the construction in the proof of we can construct smooth and decomposable,
unnormalized PCs for 2 + e~ %®) and 1 + e~ %(®) of size linear in n. Then, we can compute SL via
two calls to the oracle for LOGPC on these PCs.

Next, we choose the weight function w(-) such that SL can be used to answer #NUMPAR. For a
given instance of NUMPAR described by k4, . .., k, and a large integer m, which will be chosen
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later, we define the following weight function:
m
w(x) = 5 mzi: ki + QmZi: kiz;.

In other words, w(x) = wo + ), w;x; where wg = —m/2 —m)_, k; and w; = 2mk; for
i =1,...,n. Here, an assignment x corresponds to a subset S, = {i|z; = 1,2; € x}. Then the
assignment 1 — & corresponds to the complement S;_, = Se. In the following, we will consider
pairs of assignments (x,1 — x) and say that it is a solution to NUMPAR if S, and by extension
S _g are solutions to NUMPAR.

Observe that if (x, 1 — ) is a solution to NUMPAR, then w(x) = w(1 — ) = —m/2. Otherwise,
one of their weights must be > m /2 and the other < —3m /2. We can then deduce the following facts
about the contribution of each pair to SL, defined as ¢(x, 1 — x) = log(o(w(x)) + 1) + log(o(w(1 —
x)) +1).

If the pair (¢, 1 — ) is a solution to NUMPAR, then its contribution to SL is going to be:
c(x,1 —x) =2log(c(—m/2) +1).
Otherwise, we can bound its contribution as follows:
log(a(m/2) + 1) < c(x,1 —x) < 1+log(c(—3m/2) +1)
If there are k pairs that are solutions to the NUMPAR problem, then using the above observations we
have the following bounds on SL:
SL>(2""! —k)log (o(m/2) + 1) + 2klog (0(—m/2) + 1) > (2" — k)log (o(m/2) + 1),
(1)
SL <2 — k)(1 + log (¢(—=3m/2) + 1)) + 2k log(c(—m/2) + 1). (2)
Suppose for some given € > 0, we select m such that it satisfies both 1 — e < log(o(m/2) + 1) and
log(c(—m/2) + 1) < e. First, this implies that m also satisfies the following:
1+log(o(=3m/2) +1)) <1+log(o(—m/2) +1) < 1+e.

Plugging in above inequalities to[Eqs. (I)]and[(2)] we get the following bounds on SL w.r.t. € and k:
2" —E)(1—e) <SL< (2"t — k) (1 4 €) + 2ke.
We can alternatively express this as the following bounds on &:
n—1/1 _ _ n—1 _
2" 11 —¢) SL<k5 2" 1(1+e) SL.
1—e€ - 1—¢

The difference between the upper and lower bounds on k is equal to 2™¢/(1 — €). If this difference is
less than 1—e.g. by setting e = 1/(2™ 4+ 2)—we can exactly solve for k. In particular, it must be
equal to the ceiling of the lower bound as well as the floor of the upper bound. Moreover, the answer
to #NUMPAR is given by 2k. This concludes the proof that computing LOGPC is #P-hard. O

IN

B.6 Exponential Function of a Circuit

Theorem [3.7] (Hardness of the exponential of a circuit). Let p be a smooth and decomposable circuit
over variables X. Then, computing its exponential exp (p(X)) as a decomposable circuit is #P-hard,
even if p is structured-decomposable.

Proof. We will prove hardness of computing the exponential by showing hardness of computing
the partition function of the exponential of a circuit. Let X = {X3,...,X,,} be a collection of
binary variables with values in {—1,+1} and let p be a smooth and decomposable PC over X then
computing the quantity

> exp(p(x)) (EXPOPC)

xcval(X)
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Algorithm 6 LOGARITHM(p, cache;, cachey)

1: Input: a smooth, deterministic and decomposable PC p(X) and two caches for memoization
(cache; for the logarithmic circuit and cache, for the support circuit).
2: Output: a smooth and decomposable circuit {(X) encoding log (p(X))
3: if p € cache; then return cache;(p)
4: if p is an input unit then
5: I+ INPUT(IOg (p|supp(p)) a¢(p))
6: else if p is a sum unit then
7. n<+{}
8: fori=1to|in(p)| do
9: n < n U {SUPPORT(p;, cache,)} U {LOGARITHM(p;, cache;)}
10: [+ SUM(’FL, {log 0,1, log 02,1,..., log 9“"(1,)‘, 1})
11: else if p is a product unit then

122 n<+{}
13:  fori=1to |in(p)| do
14: n<+<nu {PRODUCT({LOGARITHM(p,;, cache;)} U {SUPPORT(p,, cache,)};-;)}

15: 1< SuM(n, {1}/l
16: cache;(p) + 1
17: return !

is #P-hard.

The proof is a reduction from the problem of computing the partition function of an Ising model,
ISING which is known to be #P-complete [20]. Given a graph G = (V, F) with n vertexes, computing
the partition function of an Ising model associated to G and equipped with potentials associated to its
edges ({Wu,v } (u,v)cr) and vertexes ({w, }vev) equals to

Z exp Z wuyvxuxv—i—Zwvxv . (ISING)

xeval(X) (u,v)EE veV

The reduction is made by constructing a smooth and decomposable circuit p(X) that computes
Z(u,v)eE Wa,wTuTy + Y, cyy- This can be done by introducing a sum units with |E| + [V| inputs
that are product units and with weights {w, o } (u,v)e 2 U {wy fvev. The first | E| product units receive
inputs from n input distributions where only 2 corresponds to the binary indicator inputs X,, and X,
for an edge (u,v) € E while the remaining n — 2 are uniform distributions outputting 1 for all the
possible states of variables X \ {X,, X, }. Analogously, the remaining |V| product units receive
input from n of which only one, corresponding to the vertex v € V' is an indicator unit over X,
while the remaining are uniform distributions for variables in X \ {X,}. O

Proposition [3.1] (Tractable exponential of a linear circuit). Let p be a linear circuit over variables X,
ie.,p(X)=>,0; - X;. Then exp (p(X)) can be represented as an omni-compatible circuit with a
single product unit in O(|p|) time.

Proof. The proof follows immediately by the properties of exponentials of sums. [Alg. 7| formalizes
the construction. O

Algorithm 7 EXPONENTIAL(p)

Input: a smooth circuit p encoding p(X) =6y + >, 6
Output: its exponential circuit encoding exp p(X))
e < {INPUT(exp (0o + 61 X1),X1)}
fori =2tondo
e < e U {INPUT(exp (6;X;), X;)}
return PRODUCT(e)

SAIN AN S
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B.7 Other tractable operators over circuits

This section proves [Lemma 3.8] which states that any operator over circuits that should yield a
decomposable and smooth circuit as output must take the form of a sum, power, logarithm or
exponential.

Lemma [3.8] (Atlas Completeness). Let f be a continuous function. If (1) f : R — R satisfies
f(z+vy) = f(x)+ f(y) then it is a linear function 3 - z; if 2) f : Ry — R satisfies f(z - y) =
f(z) - f(y), then it takes the form z?; if (3) instead f : Ry — R satisfies f(z - y) = f(z) + f(y),
then it takes the form Slog(z); and if (4) f : R — R satisfies that f(z 4+ y) = f(z) - f(y) then it
is of the form exp( - x), for a certain 5 € R.

Proof. The proof of all properties follows from constructing f such that we obtain a Cauchy functional
equation [21}42].

The condition (1) exactly takes the form of a Cauchy functional equation, then it must hold that
f@)=p =

For condition (2), let g(x) = log(f(exp(x))) for all x € R, which is continuous because f is. Then,
it follows that

g(z +y) = log(f(exp(z +y))) = log(f(exp(z) - exp(y))) = log(f(exp(z))) + log(f(exp(y)))
= g(z) + g(y).

Therefore, g(z) assumes the Cauchy functional form and, as in case (1), it is equal to 5 - z. § can
be retrieved by solving 3 - = log(f(exp(x))) for = 1. This gives 5 = log(f(e)). Applying the
definition of g, we can hence write

Flexp(a)) = e = 77 = (¢)

Let y € R, . Using the identity y = ¢'°8(*) it follows that:
B
fly) = f(elog(y)) _ (elog(y)) — yﬂ.

Condition (3) follows an analogous pattern. Let g(x) = f(exp(x)) for all z € R, which is continuous
as f is. Once again, g satisfies the Cauchy functional form:

9(x +y) = flexp(z +y)) = f(exp(x) - exp(y)) = f(exp(x)) + f(exp(y)) = g(x) + 9(y).
Therefore, g(z) must be of the form 3 - « for 8 = f(e). Hence, f(y) = Blog(y).

Lastly, for condition (4), g(x) = log(f(z)) for all x € R, which is continuous if f is. Then, we can
retrieve the Cauchy functional by

g9(x +y) = log(f(z +y)) =log(f(x) - f(y)) = log(f(x)) + log(f(y)) = g(x) + 9(y).
Therefore, g(x) must be of the form 5 - z. Hence, f(y) = exp(5 - y). O

In summary, states that if we want to enlarge our atlas beyond sum and product circuit
operators, we need to focus our attention over powers, logarithms and exponentials. At the same
time, it states that no operator with a different functional form and yet yielding a circuit made of sum
and product units can be found. Extending our atlas to deal with a new language of circuits is an
interesting future research direction.

C Complex Information-Theoretic Queries

This section collects the complete tractability and hardness results for the queries in[Tab. 2] Note that
the tractability proofs are succinct thanks to our atlas which allows to define a tractable model class
effortlessly. Some hardness proofs also benefit from the hardness results we provided for the simple
operators in the previous section.
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C.1 Cross Entropy

Theorem C.1. Let p and q be two compatible PCs over variables X, and also let q be deterministic.
Then their cross-entropy, i.e.,

—/ p(x)log(q(x))dX,
val(X)

restricted to the support of q can be exactly computed in O(|p| |q|) time. If q is not deterministic, then
computing their cross-entropy is #P-hard, even if p and q are compatible over X.

Proof. (Tractability) From [Thm. 3.6| we know that we can compute the logarithm of ¢ in polytime,
which is a PC of size O(|q|) that is compatible with ¢ and hence with p. Therefore, multiplying p and
log g according to can be done exactly in polytime and yields a circuit of size O(|p| |g|)
that is still smooth and decomposable, hence we can tractably compute its partition function.

(Hardness) The proof consists of a simple reduction from LOGPC from[Thm. 3.6 We know that
computing LOGPC for a smooth and decomposable PC over binary variables X is #P-hard. We can
reduce this to computing the cross entropy between p = 1, which can be constructed as an omni-
compatible circuit (Sec. A.2), and the original PC of the LOGPC problem. Thus, the cross-entropy
of two compatible circuits is a #P-hard problem. O

C.2 Entropy

Theorem C.2. Let p be a smooth, deterministic, and decomposable PC over variables X. Then its
entropy,ﬂ defined as

- / p(x)logp(x) dX
val(X)

can be exactly computed in O(|p|) time. If p is smooth and decomposable but not deterministic, then
computing its Shannon entropy, defined as

ENT(p) := — Z p(x)log(p(x))dX (ENTPC)
val(X)

is coNP-hard.

Proof. (Tractability) Using we can compute the logarithm of p in polytime as a smooth
and decomposable PC of size O(|p|) which furthermore shares the same support partitioning with p.
Therefore, multiplying p and log p according to[Alg. 3|can be done in polytime and yields a smooth
and decomposable circuit of size O(|p|) since log p shares the same support structure of p .
Therefore, we can compute the partition function of the resulting circuit in time linear in its size.

(Hardness) The hardness proof contains a polytime reduction from the coNP-hard 3UNSAT problem,
defined as follows: given a set of n Boolean variables X = { X1, ..., X,,} and a CNF with m clauses
{c1,...,cm} (each clause contains exactly 3 literals), decide whether the CNF is unsatisfiable.

The reduction borrows two gadget circuits ps and p., defined in They each represent a
logical formula over an auxiliary set of variables, which we denote here X', and thus outputs 0 or 1
for all values of X’. Moreover, by construction, D3 - D~ 1s the constant function 0 if and only if the
original CNF is unsatisfiable.

We further construct a circuit p,, as the summation over pg and p,. Recall that pg and p, can
efficiently be constructed as smooth and decomposable circuits, and thus their sum can be represented
as a smooth and decomposable circuit in polynomial time. We will now show that BUNSAT can be
reduced to checking whether the entropy of p,, is zero.

First, observe that for any assignment &’ to X', p,(x’) evaluates to 0, 1, or 2, because pg and p,
always evaluates to either 0 or 1. Moreover, if p,, only outputs 0 or 1 for all values of X', then
D3 - Py must always be 0, implying that the original CNF is unsatisfiable. Lastly, in such a case, the
entropy of p,, must be 0, whereas the entropy will be nonzero if there is an assignment =’ such that

“For the continuous case this quantity refers to the differential entropy, while for the discrete case it is the
Shannon entropy.
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pa(x’) = 2. This concludes the proof that computing the entropy of a smooth and decomposable PC
is coNP-hard. O

C.3 Mutual Information

Theorem C.3. Let p be a deterministic and structured-decomposable PC over variables Z = X UY
(X NY = 0). Then the mutual information between X and Y, defined as

: — v ) log P& Y)
Mi(p X, X) = /va|<z>p( )1 ® (@) -p(y)dXdY’

can be exactly computed in O(|p|) time if p is still deterministic after marginalizing out Y as well as
after marginalizing out X.EG] If p is instead smooth, decomposable, and deterministic, then computing
the mutual information between X and Y is coNP-hard.

Proof. (Tractability) From we know that the logarithm circuits of p(X,Y),
p(X)[y € supp(p(Y))], and p(Y)[x € supp(p(X))] can be computed in polytime and are smooth
and decomposable circuits of size O(|p|) that furthermore share the same support partitioning with
p(Y,Z). Therefore, we can multiply p(X,Y) with each of these logarithm circuits efficiently ac-
cording to[Thm. 3.2]to yield circuits of size O(|p|). These are still smooth and decomposable circuits.
Hence we can compute their partition functions and compute the mutual information between X and
Y wrt. p.

(Hardness) We show hardness for the case of Boolean inputs, which implies hardness in the general
case. This proof largely follows the hardness proof of to show that there is a polytime
reduction from 3UNSAT to the mutual information of PCs. For a given CNF, suppose we construct
DB, Dy> and p, = pg + p~ over a set of Boolean variables, say X, as shown in[Sec. A.2]and[Thm. C.2}

Let Y ={Y} be a single Boolean variable, and define p; as:
ps i=pg X [Y =1]+py, x [Y =0].

That is, we first construct two product units ¢1, g2 with inputs {pg, [Y" = 1]} and {p,,[Y = 0]},
respectively, and build a sum unit ps with inputs {q1, g2} and weights {1,1}. Then ps has the
following properties: (1) ps is smooth, decomposable, and deterministic, following from the fact that
ps and p. are also smooth, decomposable, and deterministic, and that ¢; and go have no overlapping
support. (2) ENT(ps) can be computed in linear-time w.r.t. the circuit size by[Thm. C.2} (3) ps(Y = 1)
and ps(Y = 0) can be computed in linear time (w.r.t. size of the circuit ps), as ps admits tractable
marginalization. (4) For any x € val(X), ps(x) = ps(x) + py(x) = po(x).

We can express the mutual information MI(ps; X,Y) as:
MI(ps; X, Y) =ENT(ps) — ps (Y =1)logps(Y =1) — ps(Y =0) log ps (Y =0) — ENT(py,).

Therefore, given an oracle that computes MI(ps; X,Y), we can check if it is equal to ENT(ps) —
ps(Y =1)logps(Y = 1)—ps(Y = 0)log ps(Y = 0), which is equivalent to checking ENT(p,,) = 0,
and decide whether the original CNF is unsatisfiable. Hence, computing the mutual information of
smooth, deterministic, and decomposable PCs is a coNP-hard problem. O

C.4 Kaullback-Leibler Divergence

Theorem C.4. Let p and q be two deterministic and compatible PCs over variables X. Then, their
intersectional Kullback-Leibler divergence (KLD), defined as

p(x)
Du(p || @) = / p() log 2% gx,
supp(p)Nsupp(q) q(x)

can exactly be computed in O(|p| |q|) time. If p and q are not deterministic, then computing their
KLD is #P-hard, even if they are compatible.

"9This structural property of circuits is also known as marginal determinism [§] and has been introduced
in the context of marginal MAP inference and the computation of same-decision probabilities of Bayesian
classifiers 35} 15]].
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Proof. (Tractability) Tractability of the intersectional KLD can be concluded directly from the
tractability of cross entropy and entropy and[C.2). Specifically, KLD can be expressed as
the difference between cross entropy and entropy:

/p(w) log dX / )logp(x) dX — / )log q(x) dX.

We can compute the entropy of a smooth, decomposable, and deterministic PC p in O(
cross entropy between two deterministic and compatible PCs p and ¢ in O(|p| |¢|) time.

(Hardness) The proof proceeds similarly to the hardness proof of Recall that the LOGPC
problem from is #P-hard for a smooth and decomposable PC over binary variables. We can
reduce this to computing the negative of KL divergence between p = 1, which can be constructed as
an omni-compatible circuit (Sec. A.2), and g the original PC of the LOGPC problem. Thus, the KLD
of two compatible circuits is a #P-hard problem. O

); and the

C.5 Rényi Entropy

Definition C.1 (Rényi entropy). The Rényi entropy of order o € R of a PC p is defined as

1
log/ p*(x)dX.
supp(p)

1l—a
Theorem C.5 (Rényi entropy for natural o). Let p be a structured-decomposable PC over variables
X and o € N. Its Rényi entropy can be computed in O(|p|) time. If p is instead smooth and
decomposable, then computing its Rényi entropy of order o is #P-hard.

Proof. (Tractability) Tractability easily follows from computing the natural power circuit of p, which
takes O(|p|®) time according to[Thm. 3.3

(Hardness) We show hardness for the case of discrete inputs. The hardness of computing the Rényi
entropy for natural number « is implied by the hardness of computing the natural power of smooth
and decomposable PCs. Specifically, we conclude the proof by observing that there exists a polytime
reduction from POW2PC, defined as > .ix) P 2(x), a #P-hard problem as proved in to

Rényi entropy with a = 2. O

Theorem C.6 (Rényi entropy for real «). Let p be a smooth, decomposable, and deterministic PC over
variables X and o € R.. Its Rényi entropy can be computed in O(|p|) time. If p is not deterministic,
then computing its Rényi entropy of order « is #P-hard, even if p is structured-decomposable.

Proof. (Tractability) Tractability easily follows from computing the power circuit of p, which takes
O(|p|) time according to[Thm. 3.5

(Hardness) Similar to the hardness proof of this hardness result follows from the fact that
computing the reciprocal of a structured-decomposable circuit is #P-hard (Thm. 3.4). Again, this is
demonstrated by a polytime reduction from INVPC Gi.e., > .. (X) p~1(x)) to Rényi entropy with
a=—1. O

C.6 Rényi’s a-divergence

Definition C.2 (Rényi’s a-divergence). The Rényi’s a-divergence of two PCs p and ¢ is defined as

1
log | P (@)g"~ (@)X
- supp(p)Nsupp(q)

Theorem C.7 (Hardness of alpha divergence of two PCs). Let p and q be two smooth and decompos-
able PCs over variables X. Then computing their Rényi’s a-divergence for o € R\ {1} is #P-hard,
even if p and q are compatible.

Da(p |l @) =

Proof. Suppose p is a smooth and decomposable PC X representing the constant function 1, which
can be constructed as in Then p® is also a constant 1. Hence, computing Rényi’s 2-
divergence between p and another smooth and decomposable PC ¢ is as hard as computing the

reciprocal of ¢, which is #P-hard (Thm. 3.4).
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Theorem {4.1] (Tractable alpha divergence of two PCs). Let p and ¢ be compatlble PCs over variables
X. Then their Rényi’s a-divergence can be exactly computed in O(|p|“ |g|) time for & € N, > 1 if
q is deterministic or in O(|p| |q|) for & € R, « # 1 if p and ¢ are both deterministic.

Proof. The proof easily follows from first computing the power circuit of p and ¢ according to
Thm. 3.5|or[Thm. 3.3]in polytime. Depending on the value of «, the resulting circuits will have size
O(|p|”) and O(]q|) for & € N or O(|p|) and O(|q|) for € R and will be compatible with the input
circuits. Then, since they are compatible between themselves, their product can be done in polytime
(Thm. 3.2) and it is going to be a smooth and decomposable PC of size O(|p|* |¢|) (for « € N) or
O(|p| |q|) (for a € R), for which the partition function can be computed in time linear in its size. [

C.7 Itakura-Saito Divergence

Theorem C.8. Let p and q be two deterministic and compatible PCs over variables X, with bounded
intersectional support supp(p) N supp(q). Then their Itakura-Saito divergence, defined as

. b))
DIS(p || Q) B /supp(p)ﬁsupp(q) <Q(w) : & Q(w) > dX, (3)

can be exactly computed in O(|p| |q|) time. If p and q are instead compatible but not deterministic,
then computing their Itakura-Saito divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the integral decomposes into

three integrals over the inner sum: fsupp(p Jrsupp(q) q(m; dX fsupp(p)msupp(q) log Em; dX -

fsupp(p)mupp(q) 1 dX.. Then, the first integral over the quotient can be solved O(|p| |g|) (Thm. B.3);

the second integral over the log of a quotient of two PCs can be computed in time O(|p| |q|) (Thm. 3.6
and[B.3)) and finally the last one integrates to the dimensionality of |supp(p) N supp(q)|, which we
assume to exist.

(Hardness) We show hardness for the case of binary variables X = {X7,..., X,,}. Suppose g is an
omni-compatible circuit representing the constant function 1, which can be constructed as in[Sec. A.2]
As such, integration in[Eq. (3)[becomes the summation }_,; x, P(®) = >_,.1x) 10g p() —2". Hence,

computing Djs must be as hard as computing Zval log p( ) since the first sum can be efficiently

computed as p must be smooth and decomposable by assumption and the last one is a constant. That
is, we reduced the problem of computing the logarithm of the non-deterministic circuit (LOGPC,

Thm. 3.6) to computing Ds. O

C.8 Cauchy-Schwarz Divergence

Theorem C.9. Let p and q be two structured-decomposable and compatible PCs over variables X.
Then their Cauchy-Schwarz divergence, defined as

mevaI(X) p(w)q(ac) dX
\/f:ce\/al(X) p?(z) dX waVa,(X) ¢*(z) dX

Des(p || ) = —log

can be exactly computed in time O(|p| |q|+|p|*+|q|*). If p and q are instead structured-decomposable
but not compatible, then computing their Cauchy-Schwarz divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the numerator inside the log can be
computed in O(|p| |¢|) time as a product of two compatible circuits (Thm. 3.2)); and the integrals

inside the square root at the denominator can both be solved in O(|p|?) and O(|q|*) respectively as
natural powers of structured-decomposable circuits (Thm. 3.3).
(Hardness) The proof follows by noting that if p and ¢ are structured—decomposable, then computing

the denominator inside the log can be exactly done in |p|® + |¢|* because they are natural powers
of structured-decomposable circuits ). Then Dcs must be as hard as a the product of two
non-compatible circuits. Therefore we can reduce MULPC (Thm. 3.1} to computing Dcs. O
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C.9 Squared Loss Divergence

Theorem C.10. Let p and q be two structured-decomposable and compatible PCs over variables X.
Then their squared loss, defined as

Dsv(p || q) = / () gl X,

can be computed exactly in time O(|p| |q|+|p|>+|q|*). If p and q are structured-decomposable but
not compatible, then computing their squared loss is #P-hard.

Proof. ( Tractabtlu‘y ) Proof follows by noting that the integral decomposes over the expanded square
S Jval(x) P 2(x) dX + faI(X) ¢ (x)dX —2 fval(x) p(x)q(x) dX and as such each integral can be

computed by leveraging the tractable power of structured-decomposable circuits and the
tractable product of compatible circuits and therefore the overall complexity is given by
the maximum of the three.

(Hardness) Proof follows by noting that the integral decomposes over the expanded square as
Joalixy P 2(x) dX + fal(x) ¢*(®) dX =2 [ x) P(z)q(z) dX and that the first two terms can be

computed in polytime as natural powers of structured-decomposable circuits (Thm. 3.3)), hence

computing Ds. must be as hard as computing the product of two non-compatible circuits. Therefore
we can reduce MULPC (Thm. 3.1)) to computing Dy . O

D Expectation-based queries

This section completes the discussion around the complex queries that can be dealt with our atlas and
details the expectations briefly discussed at the end of

D.1 Moments of a distribution

Proposition D.1 (Tractable moments of a PC). Let p(X) be a smooth and decomposable PC over
variables X = {X1, ..., X4}, then for a set of natural numbers k = (ky, ..., kq), its k—moment,
defined as

/l( )x’flxé"’. cakip(z) dX
va

can be computed exactly in time O(|p|).

Proof. The proof directly follows from representing x’{lx;“? . Zd as an omni-compatible circuit

comprising a single product unit over d input units, each encodlng xfi , and then applying (Cor. B. IL
]

D.2 Probability of logical formulas

Proposition D.2 (Tractable probability of a logical formula). Let p be a smooth and decomposable
PC over variables X and f an indicator function that represents a logical formula over X that can be
compiled into a circuit compatible with pE] Then computing P, [ f] can be done in O(|p| | f|) time.

Proof. Tt follows directly from [Thm. 3.1} by noting that P, [f] = E,.,x) [f(x)] and hence a
tractable product between p and f suffices. O
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Figure 4: Encoding an additive ensemble of two trees over X = {X;, X5} (left) in an omni-
compatible circuit over X (right).

D.3 Expected predictions

Example D.1 (Decision trees as circuits). Let F be an additive ensemble of (decision or regression)
trees over variables X, also called a forest, and computing

Fl@)= > 0;Ti(z)

TieF

Sor some input configuration x € val(X) and each T; realizing a tree, i.e., a function of the form

T@y= >, - [ [z <l

pj E€paths(T) Xr€o(p;)

where the outer sum ranges over all possible paths in tree T, l; € R is the label (class or predicted
real) associated to the leaf of that path, and the product is over indicator functions encoding the
decision to take one branch of the tree in path p; if xy, the observed value for variable X, appearing
in the decision node, i.e., satisfies the condition [z, < ;] for a certain threshold 0y, € R.

Then, it is easy to transform JF into an omni-compatible circuit p(X) of the form

p(x) = > oo JI [e<ad- JT 1

TieF,pjepaths(T))  Xr€o(ps) X #o(ps)

with a single sum unit realizing the outer sum and as many input product units as paths in the forest,
each of which realizing a fully-factorized model over X, and weighted by l;. One example is shown
infFiz. 9

Proposition D.3 (Tractable expected predictions of additive ensembles of trees). Let p be a smooth

and decomposable PC and f an additive ensemble of k decision trees over variables X and bounded
depth. Then, its expected predictions can be exactly computed in O(k |p|).

Proof. Recall that an additive ensemble of decision trees can be encoded as an omni-compatible

circuit. Then, proof follows from [Cor. B.T} O

Proposition D.4 (Tractable expected predictions of deep regressors (regression circuits)). Let p be a
structured-decomposable PC over variables X and f be a regression circuit [23|]] compatible with p
over X, and defined as

0 if n is an input
fa(@) = < fa (@) + fr(ZR) if n is an AND
Zcein(n) sc(x) (¢pe + fe(x)) ifnisan OR

where s.(x) = [x € supp(c)]. Then, its expected predictions can be exactly computed in O(|p| |h|)
time, where h is its circuit representation as computed by|[Alg. 8

Proof. Proof follows from noting that outputs a polysize circuit representation h in polytime.
Then, computing E,.,,(x) [A(2)] can be done in O(|p| |h|) time by Thm. 3.2 O
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Table 4: Sizes of the intermediate and final circuits as processed by the operators in the pipelines
of the Shannon and Rényi (for @ = 1.5) entropies and Kullback-Leibler and Alpha (for o« = 1.5)
divergences when computed for two input circuits p and ¢ learned from 20 different real-world
datasets as in [[1L1]].

DATASET P q p* ¢~ r=log(q) s=p/qg t=log(s) pxXq pxr pxt p*xqglte
NLTCS 2779 7174 2779 7174 26155 7202 26239 7202 26183 26239 7202
MSNBC 2765 6614 2765 6614 24111 6634 24171 6634 24131 24171 6634
KDD 4963 50377 4963 50377 184575 50417 184695 50417 184615 184695 50417
PLANTS 12909 64018 12909 64018 234661 64070 234817 64070 234713 234817 64070
AUDIO 10278 45864 10278 45864 168062 45950 168320 45950 168148 168320 45950
JESTER 6475 35369 6475 35369 129579 35479 129909 35479 129689 129909 35479
NETFLIX 5068 14636 5068 14636 53571 14706 53781 14706 53641 53781 14706
ACCIDENTS 3193 8183 3193 8183 29891 8299 30239 8299 30007 30239 8299
RETAIL 4790 14926 4790 14926 54554 14994 54758 14994 54622 54758 14994
PUMSB 4277 12461 4277 12461 45500 12595 45902 12595 45634 45902 12595
DNA 73828 856955 73828 856955 3141981 857029 3142203 857029 3142055 3142203 857029
KOSAREK 5115 12988 5115 12988 47354 13106 47708 13106 47472 47708 13106
MSNWEB 4859 9025 4859 9025 32675 9175 33125 9175 32825 33125 9175
BOOK 7718 12731 7718 12731 45985 12943 46621 12943 46197 46621 12943
MOVIE 8309 11732 8309 11732 42374 11926 42956 11926 42568 42956 11926
WEBKB 10598 13397 10598 13397 47859 13653 48627 13653 48115 48627 13653
CR52 10912 14348 10912 14348 51094 14546 51688 14546 51292 51688 14546
C20NG 11386 14630 11386 14630 52120 14886 52888 14886 52376 52888 14886
BBC 13884 17016 13884 17016 60857 17282 61655 17282 61123 61655 17282

AD 17744 21676 17744 21676 76870 21920 77602 21920 77114 77602 21920

Table 5: Times in seconds to compute the Shannon entropy (ENT), the cross-entropy (XENT),
Kullback-Leibler (KLD), Alpha (for o = 1.5) divergence, Rényi entropy (RényiEnt), and Cauchy-
Schwarz divergence (CSDiv) over the circuits learned from 20 different real-world datasets by either
using the algorithm distilled by our pipelines (see and [Fig. 3)) compared to the custom and
highly-optimized implementations of the same ENT [44]] and KLD [28] algorithms as available in

Juice jl [12]].

DATASET ENT KLD XENT ALPHADIV RENYIENT CSD1v
OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE

NLTCS 0.143  0.001 0.830 0.207 0.422 - 0.140 - 0.013 - 0.300 -
MSNBC 0.109 0.001 0.369 0.182 0.297 - 0.105 - 0.018 - 0.227 -
KDD 0.157 0.001 3.154 0.790 2.180 - 0.885 - 0.016 - 1.136 -
PLANTS 0.679 0.005 3.983 3.909 3.739 - 1.160 - 0.088 - 1.572 -
AUDIO 0.406 0.003 2.736 1.681 1.873 - 0.537 - 0.029 - 0.771 -
JESTER 0.764 0.003 1.019 0.432 0.805 - 0.351 - 0.024 - 0.476 -
NETELIX 0.106 0.002 0.352 0.175 0.264 - 0.100 - 0.017 - 0.201 -
ACCIDENTS  0.055 0.001 0.207 0.039 0.542 - 0.091 - 0.009 - 0.124 -
RETAIL  0.108 0.001 0.508 0.153 0.415 - 0.184 - 0.013 - 0.197 -
PUMSB  0.092 0.001 0.701 0.133 0.316 - 0.119 - 0.012 - 0.214 -
DNA 4.365 0.027 64.664 220.377 52.997 - 15.609 - 0.255 - 22.901 -
KOSAREK 0.182 0.002 0.477 0.106 0.379 - 0.139 - 0.011 - 0.735 -
MSNWEB  0.128 0.002 0.261 0.047 0.211 - 0.342 - 0.015 - 0.135 -
BOOK 0.086 0.003 0.215 0.036 0.202 - 0.075 - 0.020 - 0.115 -
MOVIE 0.272 0.002 0.443 0.063 0.373 - 0.172 - 0.015 - 0.194 -
WEBKB 0.138 0.003 0.241 0.031 0.164 - 0.079 - 0.023 - 0.098 -
CR52 0.141 0.004 0.260 0.035 0.188 - 0.087 - 0.031 - 0.143 -
C20NG  0.118 0.003 0.264 0.034 0.194 - 0.088 - 0.032 - 0.101 -
BBC 0.205 0.005 0.308 0.037 0.225 - 0.110 - 0.038 - 0.189 -
AD 0.193 0.007 0.346 0.046 0.281 - 0.151 - 0.031 - 0.207 -
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Algorithm 8 RGCTOCIRCUIT(r, cache,., cachey)

1: Input: a regression circuit r over variables X and two caches for memoization (i.e., cache, and
cachey).
Output: its representation as a circuit p(X).
if € cache, then return cache,(r)
if  is an input gate then
p < INPUT(0, (1))
else if r is a sum gate then
n
for i = 1to |in(r)| do
9: n < n U {SUPPORT(r;, cache,)} U {RGCTOCIRCUIT(r;, cache,)}
10: p SUM(n, {0;, 11, ..., Ting Hin(l)
11: else if  is a product gate then
12:  fori=1to |in(r)| do

e A A S ol

13: p < PRODUCT({RGCTOCIRCUIT(r;, cache, )} U {SUPPORT(r}, cache,)} ;)
14: cache,(r) < p
15: return p
function (p, q) function (p, ) function (p, Q)
r = quotient(p, q) r = log(q) r = product(p, q)
s = log(r) s = product(p, r) s = real_pow(p, 2.0)
t = product(p, s) return -integrate(s) t = real_pow(qg, 2.0)
return integrate (t) end a = integrate(r)
end b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))
function (» function (p, q, alpha=1.5) end
q = log(p) T real_pow(p, alpha)

r = product(p, q) s real_pow(q, 1.0-alpha)
return -integrate(s) t product (r, s)

end return log(integrate(t)) / (1.0-alpha)
end
Figure 5: The modular operators defined in can be easily composed to implement tractable
algorithms for novel query classes. Here we show the code snippet for five queries: Kullback-
Leibler divergence (k1d), Cross Entropy (xent), Entropy (ent), Alpha divergence (alphadiv), and
Cauchy-Schwarz divergence (csdiv).

E Experiments

Generated PCs All adopted PCs were generated by running Strudel [[11] on the twenty density
estimation benchmarks [48]]. For every dataset, we ran Strudel twice with 200 and 500 iterations,
respectively. All other hyperparameters were selected following Dang et al. [11].

Server specifications All our experiments were run on a server with 72 CPUs, 512G Memory, and 2
TITAN RTX GPUs.

Implementations Code snippet for the five adopted queries (i.e., Kullback-Leibler divergence, Cross
Entropy, Entropy, Alpha divergence, and Cauchy-Schwarz divergence) are shown in Note that
they are simple compositions of the modular operators introduced in

'"E.g. by compiling it into an SDD [14} 3]] whose vtree encodes the hierarchical scope partitioning of p.
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